Suppr超能文献

小鼠减数分裂中期II卵母细胞的表观遗传识别介导了独立于减数分裂退出的不对称染色质重塑。

Epigenetic discrimination by mouse metaphase II oocytes mediates asymmetric chromatin remodeling independently of meiotic exit.

作者信息

Yoshida Naoko, Brahmajosyula Manjula, Shoji Shisako, Amanai Manami, Perry Anthony C F

机构信息

Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan.

出版信息

Dev Biol. 2007 Jan 15;301(2):464-77. doi: 10.1016/j.ydbio.2006.08.006. Epub 2006 Aug 9.

Abstract

In mammalian fertilization, paternal chromatin is exhaustively remodeled, yet the maternal contribution to this process is unknown. To address this, we prevented the induction of meiotic exit by spermatozoa and examined sperm chromatin remodeling in metaphase II (mII) oocytes. Methylation of paternal H3-K4 and H3-K9 remained low, unlike maternal H3, although paternal H3-K4 methylation increased in zygotes. Thus, mII cytoplasm can sustain epigenetic asymmetry in a cell-cycle dependent manner. Paternal genomic DNA underwent oocyte-mediated cytosine demethylation and acquired maternally-derived K12-acetylated H4 (AcH4-K12) independently of microtubule assembly and maternal chromatin. AcH4-K12 persisted without typical maturation-associated deacetylation, irrespective of paternal pan-genomic cytosine methylation. Contrastingly, somatic cell nuclei underwent rapid H4 deacetylation; sperm and somatic chromatin exhibited asymmetric AcH4-K12 dynamics simultaneously within the same mII oocyte. Inhibition of somatic histone deacetylation revealed endogenous histone acetyl transferase activity. Oocytes thus specify the histone acetylation status of given nuclei by differentially targeting histone deacetylase and acetyl transferase activities. Asymmetric H4 acetylation during and immediately after fertilization was dispensable for development when both parental chromatin sets were hyperacetylated. These studies delineate non-zygotic chromatin remodeling and suggest a powerful model with which to study de novo genomic reprogramming.

摘要

在哺乳动物受精过程中,父本染色质会进行彻底重塑,但母本在这一过程中的作用尚不清楚。为了解决这个问题,我们阻止了精子诱导减数分裂退出,并研究了中期II(mII)卵母细胞中的精子染色质重塑。与母本H3不同,父本H3-K4和H3-K9的甲基化水平仍然较低,尽管父本H3-K4甲基化在合子中有所增加。因此,mII细胞质可以以细胞周期依赖的方式维持表观遗传不对称性。父本基因组DNA经历了卵母细胞介导的胞嘧啶去甲基化,并独立于微管组装和母本染色质获得了母本来源的K12-乙酰化H4(AcH4-K12)。AcH4-K12持续存在,没有典型的与成熟相关的去乙酰化,与父本全基因组胞嘧啶甲基化无关。相反,体细胞细胞核经历了快速的H4去乙酰化;精子和体细胞染色质在同一个mII卵母细胞内同时表现出不对称的AcH4-K12动态。抑制体细胞组蛋白去乙酰化揭示了内源性组蛋白乙酰转移酶活性。因此,卵母细胞通过差异靶向组蛋白去乙酰化酶和乙酰转移酶活性来确定给定细胞核的组蛋白乙酰化状态。当双亲染色质组都高度乙酰化时,受精期间和受精后立即出现的不对称H4乙酰化对于发育来说是可有可无的。这些研究描绘了非合子染色质重塑,并提出了一个用于研究从头基因组重编程的有力模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验