Suppr超能文献

基于单次试验对猕猴上丘中“去/不去”决策的预测。

Single trial-based prediction of a go/no-go decision in monkey superior colliculus.

作者信息

Hasegawa Ryohei P, Hasegawa Yukako T, Segraves Mark A

机构信息

Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.

出版信息

Neural Netw. 2006 Oct;19(8):1223-32. doi: 10.1016/j.neunet.2006.05.035. Epub 2006 Sep 20.

Abstract

While some decision-making processes often result in the generation of an observable action, for example eye or limb movements, others may prevent actions and occur without an overt behavioral response. To understand how these decisions are made, one must look directly at their neuronal substrates. We trained two monkeys on a go/no-go task which requires a saccade to a peripheral cue stimulus (go) or maintenance of fixation (no-go). We performed binary regressions on the activity of single neurons in the superior colliculus (SC), with the go/no-go decision as a predictor variable, and constructed a virtual decision function (VDF) designed to provide a good estimation of decision content and its timing in a single trial decision process. Post hoc analyses by VDF correctly predicted the monkey's choice in more than 80% of trials. These results suggest that monitoring of SC activity has sufficient capacity to predict go/no-go decisions on a trial-by-trial basis.

摘要

虽然某些决策过程通常会导致可观察到的动作,例如眼睛或肢体运动,但其他决策过程可能会阻止动作发生,且在没有明显行为反应的情况下出现。为了理解这些决策是如何做出的,必须直接观察其神经元基础。我们训练了两只猴子执行一个“去/不去”任务,该任务要求猴子根据外周提示刺激进行眼跳(去)或保持注视(不去)。我们以上丘(SC)单个神经元的活动进行二元回归分析,将“去/不去”决策作为预测变量,并构建了一个虚拟决策函数(VDF),旨在对单次试验决策过程中的决策内容及其时间提供良好估计。通过VDF进行的事后分析在超过80%的试验中正确预测了猴子的选择。这些结果表明,监测上丘活动有足够的能力在逐个试验的基础上预测“去/不去”决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验