Suppr超能文献

通过文献聚类进行生物医学知识导航。

Biomedical knowledge navigation by literature clustering.

作者信息

Yamamoto Yasunori, Takagi Toshihisa

机构信息

Department of Computational Biology, University of Tokyo, Kibanto CB01, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.

出版信息

J Biomed Inform. 2007 Apr;40(2):114-30. doi: 10.1016/j.jbi.2006.07.004. Epub 2006 Aug 5.

Abstract

There is an urgent need for a system that facilitates surveys by biomedical researchers and the subsequent formulation of hypotheses based on the knowledge stored in literature. One approach is to cluster papers discussing a topic of interest and reveal its sub-topics that allow researchers to acquire an overview of the topic. We developed such a system called McSyBi. It accepts a set of citation data retrieved with PubMed and hierarchically and non-hierarchically clusters them based on the titles and the abstracts using statistical and natural language processing methods. A novel point is that McSyBi allows its users to change the clustering by entering a MeSH term or UMLS Semantic Type, and therefore they can see a set of citation data from multiple aspects. We evaluated McSyBi quantitatively and qualitatively: clustering of 27 sets of citation data (40643 different papers) and scrutiny of several resultant clusters. While non-hierarchical clustering provides us with an overview of the target topic, hierarchical clustering allows us to see more details and relationships among citation data. McSyBi is freely available at http://textlens.hgc.jp/McSyBi/.

摘要

迫切需要一种系统,以方便生物医学研究人员进行调查,并基于文献中存储的知识随后形成假设。一种方法是对讨论感兴趣主题的论文进行聚类,并揭示其允许研究人员获得该主题概述的子主题。我们开发了这样一个名为McSyBi的系统。它接受通过PubMed检索到的一组引文数据,并使用统计和自然语言处理方法根据标题和摘要对它们进行分层和非分层聚类。一个新颖之处在于,McSyBi允许用户通过输入MeSH术语或UMLS语义类型来更改聚类,因此他们可以从多个方面查看一组引文数据。我们对McSyBi进行了定量和定性评估:对27组引文数据(40643篇不同论文)进行聚类,并对几个所得聚类进行审查。虽然非分层聚类为我们提供了目标主题的概述,但分层聚类使我们能够看到引文数据之间更多的细节和关系。McSyBi可在http://textlens.hgc.jp/McSyBi/上免费获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验