Perry Gavin, Rolls Edmund T, Stringer Simon M
Oxford University, Centre for Computational Neuroscience, Department of Experimental Psychology, Oxford, UK.
Vision Res. 2006 Nov;46(23):3994-4006. doi: 10.1016/j.visres.2006.07.025. Epub 2006 Sep 25.
We show in a 4-layer competitive neuronal network that continuous transformation learning, which uses spatial correlations and a purely associative (Hebbian) synaptic modification rule, can build view invariant representations of complex 3D objects. This occurs even when views of the different objects are interleaved, a condition where temporal trace learning fails. Human psychophysical experiments showed that view invariant object learning can occur when spatial but not temporal continuity applies because of interleaving of stimuli, although sequential presentation, which produces temporal continuity, can facilitate learning. Thus continuous transformation learning is an important principle that may contribute to view invariant object recognition.
我们在一个四层竞争性神经网络中表明,连续变换学习利用空间相关性和纯联想性(赫布式)突触修饰规则,可以构建复杂三维物体的视图不变表示。即使不同物体的视图相互交错,即时间痕迹学习失效的情况下,这种情况也会发生。人类心理物理学实验表明,由于刺激的交错,当应用空间连续性而非时间连续性时,视图不变物体学习就会发生,尽管产生时间连续性的顺序呈现可以促进学习。因此,连续变换学习是一个重要的原则,可能有助于视图不变物体识别。