Suppr超能文献

侧向连接和尖峰动力学如何分离一起运动的多个物体。

How lateral connections and spiking dynamics may separate multiple objects moving together.

机构信息

Oxford Centre for Theoretical Neuroscience and Artificial Intelligence, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.

出版信息

PLoS One. 2013 Aug 2;8(8):e69952. doi: 10.1371/journal.pone.0069952. Print 2013.

Abstract

Over successive stages, the ventral visual system of the primate brain develops neurons that respond selectively to particular objects or faces with translation, size and view invariance. The powerful neural representations found in Inferotemporal cortex form a remarkably rapid and robust basis for object recognition which belies the difficulties faced by the system when learning in natural visual environments. A central issue in understanding the process of biological object recognition is how these neurons learn to form separate representations of objects from complex visual scenes composed of multiple objects. We show how a one-layer competitive network comprised of 'spiking' neurons is able to learn separate transformation-invariant representations (exemplified by one-dimensional translations) of visual objects that are always seen together moving in lock-step, but separated in space. This is achieved by combining 'Mexican hat' functional lateral connectivity with cell firing-rate adaptation to temporally segment input representations of competing stimuli through anti-phase oscillations (perceptual cycles). These spiking dynamics are quickly and reliably generated, enabling selective modification of the feed-forward connections to neurons in the next layer through Spike-Time-Dependent Plasticity (STDP), resulting in separate translation-invariant representations of each stimulus. Variations in key properties of the model are investigated with respect to the network's ability to develop appropriate input representations and subsequently output representations through STDP. Contrary to earlier rate-coded models of this learning process, this work shows how spiking neural networks may learn about more than one stimulus together without suffering from the 'superposition catastrophe'. We take these results to suggest that spiking dynamics are key to understanding biological visual object recognition.

摘要

在连续的阶段,灵长类动物大脑的腹侧视觉系统发育出对特定物体或面孔具有选择性反应的神经元,这些神经元具有平移、大小和视角不变性。在下颞叶皮层中发现的强大神经表示形成了一个非常快速和强大的物体识别基础,这掩盖了系统在自然视觉环境中学习时所面临的困难。理解生物物体识别过程的一个核心问题是,这些神经元如何学会从由多个物体组成的复杂视觉场景中形成物体的单独表示。我们展示了一个由“尖峰”神经元组成的单层竞争网络如何能够学习到对视觉物体的单独的变换不变表示(以一维平移为例),这些物体总是一起移动,但在空间上是分开的。这是通过结合“墨西哥帽”功能横向连接以及细胞发放率适应来实现的,通过反相振荡(感知循环)将竞争刺激的输入表示进行时间分段。这些尖峰动力学被快速可靠地产生,从而能够通过尖峰时间依赖性可塑性(STDP)选择性地修改下一层神经元的前馈连接,从而对每个刺激产生单独的平移不变表示。针对网络通过 STDP 开发适当的输入表示并随后输出表示的能力,研究了模型的关键属性的变化。与早期的这种学习过程的率编码模型相反,这项工作表明,尖峰神经网络如何能够一起学习多个刺激,而不会遭受“叠加灾难”。我们认为这些结果表明,尖峰动力学是理解生物视觉物体识别的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57a4/3732294/26d135de7c15/pone.0069952.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验