Ranson Neil, Stromer Thusnelda, Bousset Luc, Melki Ronald, Serpell Louise C
Astbury Centre for Structural Molecular Biology and Institute for Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
Protein Sci. 2006 Nov;15(11):2481-7. doi: 10.1110/ps.062215206. Epub 2006 Sep 25.
The protein Ure2 from baker's yeast is associated with a heritable and transmissible phenotypic change in the yeast Saccharomyces cerevisiae. Such prion properties are thought to arise from the fact that Ure2p is able to self-assemble into insoluble fibrils. Assemblies of Ure2p are composed of full-length proteins in which the structure of the globular, functional, C-terminal domain is retained. We have carried out structural studies on full-length, wild-type Ure2p fibrils with a regularly twisted morphology. Using electron microscopy and cryo-electron microscopy with image analysis we show high-resolution images of the twisted filaments revealing details within the fibrillar structure. We examine these details in light of recent proposed models and discuss how this new information contributes to an understanding of the architecture of Ure2p yeast prion fibrils.
面包酵母中的蛋白质Ure2与酿酒酵母中一种可遗传且可传播的表型变化相关。这种朊病毒特性被认为源于Ure2p能够自组装成不溶性纤维这一事实。Ure2p的聚集体由全长蛋白质组成,其中球状、功能性的C末端结构域的结构得以保留。我们对具有规则扭曲形态的全长野生型Ure2p纤维进行了结构研究。通过电子显微镜和冷冻电子显微镜以及图像分析,我们展示了扭曲细丝的高分辨率图像,揭示了纤维状结构内的细节。我们根据最近提出的模型研究这些细节,并讨论这些新信息如何有助于理解Ure2p酵母朊病毒纤维的结构。