Suppr超能文献

具有非光滑函数的多时间尺度竞争神经网络的全局指数稳定性

Global exponential stability of multitime scale competitive neural networks with nonsmooth functions.

作者信息

Lu Hongtao, Amari Shun-ichi

机构信息

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, PR China.

出版信息

IEEE Trans Neural Netw. 2006 Sep;17(5):1152-64. doi: 10.1109/tnn.2006.875995.

Abstract

In this paper, we study the global exponential stability of a multitime scale competitive neural network model with nonsmooth functions, which models a literally inhibited neural network with unsupervised Hebbian learning. The network has two types of state variables, one corresponds to the fast neural activity and another to the slow unsupervised modification of connection weights. Based on the nonsmooth analysis techniques, we prove the existence and uniqueness of equilibrium for the system and establish some new theoretical conditions ensuring global exponential stability of the unique equilibrium of the neural network. Numerical simulations are conducted to illustrate the effectiveness of the derived conditions in characterizing stability regions of the neural network.

摘要

在本文中,我们研究了一个具有非光滑函数的多时间尺度竞争神经网络模型的全局指数稳定性,该模型对具有无监督赫布学习的逐字抑制神经网络进行建模。该网络有两种类型的状态变量,一种对应于快速神经活动,另一种对应于连接权重的缓慢无监督修改。基于非光滑分析技术,我们证明了系统平衡点的存在性和唯一性,并建立了一些新的理论条件,确保神经网络唯一平衡点的全局指数稳定性。进行了数值模拟,以说明所推导条件在刻画神经网络稳定区域方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验