Kuhn Isabelle, Kellenberger Esther, Rognan Didier, Lund Frances E, Muller-Steffner Hélène, Schuber Francis
Institut Gilbert Laustriat, UMR 7175 CNRS, Université Louis Pasteur (Strasbourg I), Faculté de Pharmacie, 67401 Illkirch, France.
Biochemistry. 2006 Oct 3;45(39):11867-78. doi: 10.1021/bi060930g.
Schistosoma mansoni NAD(P)+ catabolizing enzyme (SmNACE) is a new member of the ADP-ribosyl cyclase family. In contrast to all the other enzymes that are involved in the production of metabolites that elicit Ca2+ mobilization, SmNACE is virtually unable to transform NAD+ into the second messenger cyclic ADP-ribose (cADPR). Sequence alignments revealed that one of four conserved residues within the active site of these enzymes was replaced in SmNACE by a histidine (His103) instead of the highly conserved tryptophan. To find out whether the inability of SmNACE to catalyze the canonical ADP-ribosyl cyclase reaction is linked to this change, we have replaced His103 with a tryptophan. The H103W mutation in SmNACE was indeed found to restore ADP-ribosyl cyclase activity as cADPR amounts for 7% of the reaction products (i.e., a value larger than observed for other members of this family such as CD38). Introduction of a Trp103 residue provides some of the binding characteristics of mammalian ADP-ribosyl cyclases such as increased affinity for Cibacron blue and slow-binding inhibition by araF-NAD+. Homology modeling of wild-type and H103W mutant three-dimensional structures, and docking of substrates within the active sites, provides new insight into the catalytic mechanism of SmNACE. Both residue side chains share similar roles in the nicotinamide-ribose bond cleavage step leading to an E.ADP-ribosyl reaction intermediate. They diverge, however, in the evolution of this intermediate; His103 provides a more polar environment favoring the accessibility to water and hydrolysis leading to ADP-ribose at the expense of the intramolecular cyclization pathway resulting in cADPR.
曼氏血吸虫NAD(P)+分解代谢酶(SmNACE)是ADP-核糖基环化酶家族的新成员。与所有其他参与产生引发Ca2+动员的代谢物的酶不同,SmNACE几乎无法将NAD+转化为第二信使环ADP-核糖(cADPR)。序列比对显示,这些酶活性位点内四个保守残基中的一个在SmNACE中被组氨酸(His103)取代,而不是高度保守的色氨酸。为了确定SmNACE无法催化典型的ADP-核糖基环化酶反应是否与这一变化有关,我们将His103替换为色氨酸。确实发现SmNACE中的H103W突变恢复了ADP-核糖基环化酶活性,因为cADPR占反应产物的7%(即,该值大于该家族其他成员如CD38所观察到的值)。引入Trp103残基赋予了哺乳动物ADP-核糖基环化酶的一些结合特性,如对汽巴蓝的亲和力增加以及araF-NAD+的慢结合抑制。野生型和H103W突变体三维结构的同源建模以及活性位点内底物的对接,为SmNACE的催化机制提供了新的见解。两个残基侧链在导致E.ADP-核糖反应中间体的烟酰胺-核糖键裂解步骤中发挥相似作用。然而,它们在该中间体的演变过程中有所不同;His103提供了一个极性更强的环境,有利于水的可及性和水解,从而以牺牲导致cADPR的分子内环化途径为代价生成ADP-核糖。