Suppr超能文献

从专一性ADP-核糖基环化酶向多功能NAD水解酶进化的酶学结构基础。

Structural basis for enzymatic evolution from a dedicated ADP-ribosyl cyclase to a multifunctional NAD hydrolase.

作者信息

Liu Qun, Graeff Richard, Kriksunov Irina A, Jiang Hong, Zhang Bo, Oppenheimer Norman, Lin Hening, Potter Barry V L, Lee Hon Cheung, Hao Quan

机构信息

MacCHESS, Cornell High Energy Synchrotron Source, CornellUniversity, Ithaca, New York 14853, USA.

出版信息

J Biol Chem. 2009 Oct 2;284(40):27637-45. doi: 10.1074/jbc.M109.031005. Epub 2009 Jul 28.

Abstract

Cyclic ADP-ribose (cADPR) is a universal calcium messenger molecule that regulates many physiological processes. The production and degradation of cADPR are catalyzed by a family of related enzymes, including the ADP-ribosyl cyclase from Aplysia california (ADPRAC) and CD38 from human. Although ADPRC and CD38 share a common evolutionary ancestor, their enzymatic functions toward NAD and cADPR homeostasis have evolved divergently. Thus, ADPRC can only generate cADPR from NAD (cyclase), whereas CD38, in contrast, has multiple activities, i.e. in cADPR production and degradation, as well as NAD hydrolysis (NADase). In this study, we determined a number of ADPRC and CD38 structures bound with various nucleotides. From these complexes, we elucidated the structural features required for the cyclization (cyclase) reaction of ADPRC and the NADase reaction of CD38. Using the structural approach in combination with site-directed mutagenesis, we identified Phe-174 in ADPRC as a critical residue in directing the folding of the substrate during the cyclization reaction. Thus, a point mutation of Phe-174 to glycine can turn ADPRC from a cyclase toward an NADase. The equivalent residue in CD38, Thr-221, is shown to disfavor the cyclizing folding of the substrate, resulting in NADase being the dominant activity. The comprehensive structural comparison of CD38 and APDRC presented in this study thus provides insights into the structural determinants for the functional evolution from a cyclase to a hydrolase.

摘要

环磷酸腺苷核糖(cADPR)是一种普遍存在的钙信使分子,可调节多种生理过程。cADPR的产生和降解由一系列相关酶催化,包括加州海兔的ADP核糖基环化酶(ADPRAC)和人类的CD38。尽管ADPRC和CD38有共同的进化祖先,但它们对NAD和cADPR稳态的酶促功能却朝着不同方向进化。因此,ADPRC只能从NAD生成cADPR(环化酶),而相比之下,CD38具有多种活性,即在cADPR的产生和降解以及NAD水解(NAD酶)方面。在本研究中,我们确定了一些与各种核苷酸结合的ADPRC和CD38结构。从这些复合物中,我们阐明了ADPRC环化(环化酶)反应和CD38的NAD酶反应所需的结构特征。通过结合定点诱变的结构方法,我们确定ADPRC中的苯丙氨酸-174是环化反应过程中指导底物折叠的关键残基。因此,苯丙氨酸-174突变为甘氨酸可使ADPRC从环化酶转变为NAD酶。CD38中的等效残基苏氨酸-221不利于底物的环化折叠,导致NAD酶成为主要活性。本研究中对CD38和APDRC进行的全面结构比较,为从环化酶到水解酶的功能进化的结构决定因素提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da9c/2785692/d67337978366/zbc0430990130001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验