Prakash Shipra, Alia Alia, Gast Peter, de Groot Huub J M, Matysik Jörg, Jeschke Gunnar
Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
J Am Chem Soc. 2006 Oct 4;128(39):12794-9. doi: 10.1021/ja0623616.
Photochemically induced dynamic nuclear polarization (photo-CIDNP) is observed in photosynthetic reaction centers of the carotenoid-less strain R26 of the purple bacterium Rhodobacter sphaeroides by (13)C solid-state NMR at three different magnetic fields (4.7, 9.4, and 17.6 T). The signals of the donor appear enhanced absorptive (positive) and of the acceptor emissive (negative). This spectral feature is in contrast to photo-CIDNP data of reactions centers of Rhodobacter sphaeroides wildtype reported previously (Prakash, S.; Alia; Gast, P.; de Groot, H. J. M.; Jeschke, G.; Matysik, J. J. Am. Chem. Soc. 2005, 127, 14290-14298) in which all signals appear emissive. The difference is due to an additional mechanism occurring in RCs of R26 in the long-living triplet state of the donor, allowing for spectral editing by different enhancement mechanisms. The overall shape of the spectra remains independent of the magnetic field. The strongest enhancement is observed at 4.7 T, enabling the observation of photo-CIDNP enhanced NMR signals from reaction center cofactors in entire bacterial cells allowing for detection of subtle changes in the electronic structure at nanomolar concentration of the donor cofactor. Therefore, we establish in this paper photo-CIDNP MAS NMR as a method to study the electronic structure of photosynthetic cofactors at the molecular and atomic resolution as well as at cellular concentrations.
通过在三个不同磁场(4.7、9.4和17.6 T)下的(13)C固态核磁共振,在紫色细菌球形红杆菌无类胡萝卜素菌株R26的光合反应中心观察到光化学诱导动态核极化(光CIDNP)。供体的信号呈现增强吸收(正),受体的信号呈现发射(负)。这种光谱特征与先前报道的球形红杆菌野生型反应中心的光CIDNP数据(Prakash,S.;Alia;Gast,P.;de Groot,H. J. M.;Jeschke,G.;Matysik,J. J. Am. Chem. Soc. 2005,127,14290 - 14298)相反,在该数据中所有信号均为发射性。差异源于R26反应中心在供体的长寿命三重态中发生的一种额外机制,使得能够通过不同的增强机制进行光谱编辑。光谱的整体形状与磁场无关。在4.7 T时观察到最强的增强,这使得能够在整个细菌细胞中观察到来自反应中心辅因子的光CIDNP增强核磁共振信号,从而能够检测供体辅因子纳摩尔浓度下电子结构的细微变化。因此,我们在本文中确立了光CIDNP MAS NMR作为一种在分子和原子分辨率以及细胞浓度下研究光合辅因子电子结构的方法。