Kim Yunmi, Alia A, Kurle-Tucholski Patrick, Wiebeler Christian, Matysik Jörg
Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany.
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands.
Molecules. 2024 Feb 27;29(5):1021. doi: 10.3390/molecules29051021.
Photosynthetic reaction centers (RCs) are membrane proteins converting photonic excitations into electric gradients. The heliobacterial RCs (HbRCs) are assumed to be the precursors of all known RCs, making them a compelling subject for investigating structural and functional relationships. A comprehensive picture of the electronic structure of the HbRCs is still missing. In this work, the combination of selective isotope labelling of C and N nuclei and the utilization of photo-CIDNP MAS NMR (photochemically induced dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance) allows for highly enhanced signals from the radical-pair-forming cofactors. The remarkable magnetic-field dependence of the solid-state photo-CIDNP effect allows for observation of positive signals of the electron donor cofactor at 4.7 T, which is interpreted in terms of a dominant contribution of the differential relaxation (DR) mechanism. Conversely, at 9.4 T, the emissive signals mainly originate from the electron acceptor, due to the strong activation of the three-spin mixing (TSM) mechanism. Consequently, we have utilized two-dimensional homonuclear photo-CIDNP MAS NMR at both 4.7 T and 9.4 T. These findings from experimental investigations are corroborated by calculations based on density functional theory (DFT). This allows us to present a comprehensive investigation of the electronic structure of the cofactors involved in electron transfer (ET).
光合反应中心(RCs)是将光子激发转化为电梯度的膜蛋白。人们认为嗜盐菌反应中心(HbRCs)是所有已知反应中心的前身,这使得它们成为研究结构与功能关系的一个极具吸引力的对象。目前仍缺乏对HbRCs电子结构的全面了解。在这项工作中,碳和氮原子核的选择性同位素标记与光化学诱导动态核极化魔角旋转核磁共振(photo-CIDNP MAS NMR)的结合,使得来自形成自由基对的辅因子的信号得到了极大增强。固态光化学诱导动态核极化效应显著的磁场依赖性使得在4.7 T时能够观察到电子供体辅因子的正信号,这可以用微分弛豫(DR)机制的主要贡献来解释。相反,在9.4 T时,发射信号主要来自电子受体,这是由于三自旋混合(TSM)机制的强烈激活。因此,我们在4.7 T和9.4 T下都利用了二维同核光化学诱导动态核极化魔角旋转核磁共振。基于密度泛函理论(DFT)的计算证实了这些实验研究结果。这使我们能够对参与电子转移(ET)的辅因子的电子结构进行全面研究。