Suppr超能文献

去除近红外组织光谱中与分析物无关的变化。

Removal of analyte-irrelevant variations in near-infrared tissue spectra.

作者信息

Yang Ye, Shoer Leah, Soyemi Olusola O, Landry Michelle R, Soller Babs R

机构信息

Department of Anesthesiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA.

出版信息

Appl Spectrosc. 2006 Sep;60(9):1070-7. doi: 10.1366/000370206778397263.

Abstract

This paper describes mathematical techniques to correct for analyte-irrelevant optical variability in tissue spectra by combining multiple preprocessing techniques to address variability in spectral properties of tissue overlying and within the muscle. A mathematical preprocessing method called principal component analysis (PCA) loading correction is discussed for removal of inter-subject, analyte-irrelevant variations in muscle scattering from continuous-wave diffuse reflectance near-infrared (NIR) spectra. The correction is completed by orthogonalizing spectra to a set of loading vectors of the principal components obtained from principal component analysis of spectra with the same analyte value, across different subjects in the calibration set. Once the loading vectors are obtained, no knowledge of analyte values is required for future spectral correction. The method was tested on tissue-like, three-layer phantoms using partial least squares (PLS) regression to predict the absorber concentration in the phantom muscle layer from the NIR spectra. Two other mathematical methods, short-distance correction to remove spectral interference from skin and fat layers and standard normal variate scaling, were also applied and/or combined with the proposed method prior to the PLS analysis. Each of the preprocessing methods improved model prediction and/or reduced model complexity. The combination of the three preprocessing methods provided the most accurate prediction results. We also performed a preliminary validation on in vivo human tissue spectra.

摘要

本文介绍了通过组合多种预处理技术来校正组织光谱中与分析物无关的光学变异性的数学技术,以解决覆盖在肌肉上和肌肉内部的组织光谱特性的变异性问题。讨论了一种称为主成分分析(PCA)载荷校正的数学预处理方法,用于从连续波漫反射近红外(NIR)光谱中去除受试者间与分析物无关的肌肉散射变化。该校正通过将光谱与从校准集中不同受试者具有相同分析物值的光谱主成分分析获得的一组载荷向量进行正交化来完成。一旦获得载荷向量,未来的光谱校正就不需要分析物值的知识。该方法在类似组织的三层体模上进行了测试,使用偏最小二乘(PLS)回归从NIR光谱预测体模肌肉层中的吸收剂浓度。在进行PLS分析之前,还应用了另外两种数学方法,即去除皮肤和脂肪层光谱干扰的短距离校正和标准正态变量缩放,并将其与所提出的方法结合使用。每种预处理方法都改进了模型预测和/或降低了模型复杂性。三种预处理方法的组合提供了最准确的预测结果。我们还对体内人体组织光谱进行了初步验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验