Suppr超能文献

近红外光谱最佳预处理和波长选择的新指标

New indicator for optimal preprocessing and wavelength selection of near-infrared spectra.

作者信息

Skibsted E T S, Boelens H F M, Westerhuis J A, Witte D T, Smilde A K

机构信息

Process Analysis and Chemometrics, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.

出版信息

Appl Spectrosc. 2004 Mar;58(3):264-71. doi: 10.1366/000370204322886591.

Abstract

Preprocessing of near-infrared spectra to remove unwanted, i.e., non-related spectral variation and selection of informative wavelengths is considered to be a crucial step prior to the construction of a quantitative calibration model. The standard methodology when comparing various preprocessing techniques and selecting different wavelengths is to compare prediction statistics computed with an independent set of data not used to make the actual calibration model. When the errors of reference value are large, no such values are available at all, or only a limited number of samples are available, other methods exist to evaluate the preprocessing method and wavelength selection. In this work we present a new indicator (SE) that only requires blank sample spectra, i.e., spectra of samples that are mixtures of the interfering constituents (everything except the analyte), a pure analyte spectrum, or alternatively, a sample spectrum where the analyte is present. The indicator is based on computing the net analyte signal of the analyte and the total error, i.e., instrumental noise and bias. By comparing the indicator values when different preprocessing techniques and wavelength selections are applied to the spectra, the optimal preprocessing technique and the optimal wavelength selection can be determined without knowledge of reference values, i.e., it minimizes the non-related spectral variation. The SE indicator is compared to two other indicators that also use net analyte signal computations. To demonstrate the feasibility of the SE indicator, two near-infrared spectral data sets from the pharmaceutical industry were used, i.e., diffuse reflectance spectra of powder samples and transmission spectra of tablets. Especially in pharmaceutical spectroscopic applications, it is expected beforehand that the non-related spectral variation is rather large and it is important to remove it. The indicator gave excellent results with respect to wavelength selection and optimal preprocessing. The SE indicator performs better than the two other indicators, and it is also applicable to other situations where the Beer-Lambert law is valid.

摘要

近红外光谱的预处理以去除不需要的,即非相关光谱变化,并选择信息丰富的波长,被认为是构建定量校准模型之前的关键步骤。在比较各种预处理技术和选择不同波长时,标准方法是比较使用未用于构建实际校准模型的独立数据集计算得到的预测统计量。当参考值的误差很大、根本没有这样的值可用,或者只有有限数量的样本可用时,存在其他方法来评估预处理方法和波长选择。在这项工作中,我们提出了一种新的指标(SE),它只需要空白样品光谱,即由干扰成分(除分析物外的所有成分)混合物组成的样品光谱、纯分析物光谱,或者另一种情况,即存在分析物的样品光谱。该指标基于计算分析物的净分析物信号和总误差,即仪器噪声和偏差。通过比较将不同预处理技术和波长选择应用于光谱时的指标值,可以在不知道参考值的情况下确定最佳预处理技术和最佳波长选择,即它能最小化非相关光谱变化。将SE指标与另外两个也使用净分析物信号计算的指标进行了比较。为了证明SE指标的可行性,使用了来自制药行业的两个近红外光谱数据集,即粉末样品的漫反射光谱和片剂的透射光谱。特别是在药物光谱应用中,预先预计非相关光谱变化会相当大,去除它很重要。该指标在波长选择和最佳预处理方面给出了优异的结果。SE指标比另外两个指标表现更好,并且它也适用于比尔 - 朗伯定律有效的其他情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验