L'Hoste S, Barriere H, Belfodil R, Rubera I, Duranton C, Tauc M, Poujeol C, Barhanin J, Poujeol P
UMR Centre National de la Recherche Scientifique 6548, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France.
Am J Physiol Renal Physiol. 2007 Feb;292(2):F628-38. doi: 10.1152/ajprenal.00132.2006. Epub 2006 Sep 26.
We have previously shown that K(+)-selective TASK2 channels and swelling-activated Cl(-) currents are involved in a regulatory volume decrease (RVD; Barriere H, Belfodil R, Rubera I, Tauc M, Lesage F, Poujeol C, Guy N, Barhanin J, Poujeol P. J Gen Physiol 122: 177-190, 2003; Belfodil R, Barriere H, Rubera I, Tauc M, Poujeol C, Bidet M, Poujeol P. Am J Physiol Renal Physiol 284: F812-F828, 2003). The aim of this study was to determine the mechanism responsible for the activation of TASK2 channels during RVD in proximal cell lines from mouse kidney. For this purpose, the patch-clamp whole-cell technique was used to test the effect of pH and the buffering capacity of external bath on Cl(-) and K(+) currents during hypotonic shock. In the presence of a high buffer concentration (30 mM HEPES), the cells did not undergo RVD and did not develop outward K(+) currents (TASK2). Interestingly, the hypotonic shock reduced the cytosolic pH (pH(i)) and increased the external pH (pH(e)) in wild-type but not in cftr (-/-) cells. The inhibitory effect of DIDS suggests that the acidification of pH(i) and the alkalinization of pH(e) induced by hypotonicity in wild-type cells could be due to an exit of HCO(3)(-). In conclusion, these results indicate that Cl(-) influx will be the driving force for HCO(3)(-) exit through the activation of the Cl(-)/HCO(3)(-) exchanger. This efflux of HCO(3)(-) then alkalinizes pH(e), which in turn activates TASK2 channels.
我们之前已经表明,钾离子选择性TASK2通道和肿胀激活的氯离子电流参与调节性容积减小(RVD;Barriere H,Belfodil R,Rubera I,Tauc M,Lesage F,Poujeol C,Guy N,Barhanin J,Poujeol P.《普通生理学杂志》122: 177 - 190,2003;Belfodil R,Barriere H,Rubera I,Tauc M,Poujeol C,Bidet M,Poujeol P.《美国生理学杂志:肾脏生理学》284: F812 - F828,2003)。本研究的目的是确定小鼠肾近端细胞系RVD过程中TASK2通道激活的机制。为此,采用膜片钳全细胞技术测试低渗休克期间pH值和细胞外浴液缓冲能力对氯离子和钾离子电流的影响。在高缓冲剂浓度(30 mM HEPES)存在的情况下,细胞未发生RVD,也未产生外向钾离子电流(TASK2)。有趣的是,低渗休克降低了野生型细胞而非cftr(-/-)细胞的胞质pH值(pH(i))并升高了细胞外pH值(pH(e))。DIDS的抑制作用表明,野生型细胞中低渗诱导的pH(i)酸化和pH(e)碱化可能是由于HCO(3)(-)外流所致。总之,这些结果表明,氯离子内流将是通过激活Cl(-)/HCO(3)(-)交换体促使HCO(3)(-)外流的驱动力。这种HCO(3)(-)外流随后使pH(e)碱化,进而激活TASK2通道。