Muzumdar Radhika H, Ma Xiaohui, Fishman Sigal, Yang Xiaoman, Atzmon Gil, Vuguin Patricia, Einstein Francine H, Hwang David, Cohen Pinchas, Barzilai Nir
Division of Pediatric Endocrinology, Children's Hospital at Montefiore, New York, USA.
Diabetes. 2006 Oct;55(10):2788-96. doi: 10.2337/db06-0318.
IGF-I is recognized as an insulin sensitizer at the liver and muscle, while recent evidence suggests that IGF-binding protein (IGFBP)-3 acts as an insulin antagonist. As there is a paucity of IGF-I receptors in the liver and as the IGF-IGFBP system in the central nervous system is emerging as physiologically relevant, we examined whether the effects of IGF-I and IGFBP-3 on insulin action are mediated through central mechanisms. Intracerebroventricular (ICV) infusion of IGF-I during the insulin clamp (3 mU x kg(-1) x min(-1)) resulted in significant improvement in hepatic insulin action (50%, P < 0.05). In contrast, ICV infusion of IGFBP-3 significantly impaired insulin action at the liver (45% increase in hepatic glucose production, P < 0.01). While IGF-I marginally increased peripheral glucose uptake, IGFBP-3 significantly decreased peripheral glucose uptake (approximately 30%, P < 0.01). As the nuclear localization signal mutant IGFBP-3, which has a normal affinity to IGFs but binds other IGFBP-3 partners poorly and fails to normally internalize, has reduced central activity on metabolism, we conclude that the effects of IGFBP-3 on the hypothalamus involve activity mediated by interfacing with other molecules in addition to IGFs. Marked, opposing, and independent physiological effects of IGF-I and IGFBP-3 through central mechanisms may have implications on potential strategies in specific modulation of peripheral insulin action.