Suppr超能文献

从头设计配体的分子复杂性分析

Molecular complexity analysis of de novo designed ligands.

作者信息

Boda Krisztina, Johnson A Peter

机构信息

ICAMS, School of Chemistry, University of Leeds, LS2 9JT, UK.

出版信息

J Med Chem. 2006 Oct 5;49(20):5869-79. doi: 10.1021/jm050054p.

Abstract

The de novo approach to structure-based rational drug design can provide a powerful tool for suggestion of entirely novel potential leads. However, programs for structure generation typically generate large numbers of putative ligands; therefore, various heuristics (such as estimation of binding affinity and synthetic accessibility) have to be adopted to evaluate and prune large answer sets with the goal of suggesting ligands with high binding affinity but low structural complexity. A novel method for complexity analysis is described. This method provides a rapid and effective ranking technique for elimination of structures with complicated molecular motifs. This complexity analysis technique, implemented within the SPROUT de novo design system, is based on the statistical distribution of various cyclic and acyclic topologies and atom substitution patterns in existing drugs or commercially available starting materials. A novel feature of the technique that distinguishes it from other published methods is that the matching takes place at various levels of abstraction, so that it can evaluate complexity scores, even for structures which contain atoms with unspecified atom type, which is sometimes the case with the initial output of de novo structure generation systems.

摘要

基于结构的合理药物设计的从头开始方法可以为提出全新的潜在先导物提供强大工具。然而,结构生成程序通常会生成大量假定的配体;因此,必须采用各种启发式方法(如结合亲和力估计和合成可及性)来评估和筛选大量答案集,目标是提出具有高结合亲和力但低结构复杂性的配体。本文描述了一种用于复杂性分析的新方法。该方法提供了一种快速有效的排序技术,用于消除具有复杂分子基序的结构。这种复杂性分析技术在SPROUT从头设计系统中实现,它基于现有药物或市售起始原料中各种环状和非环状拓扑结构以及原子取代模式的统计分布。该技术与其他已发表方法的一个新颖区别在于,匹配在不同抽象层次上进行,这样即使对于包含原子类型未指定的原子的结构,它也能评估复杂性分数,而从头结构生成系统的初始输出有时会出现这种情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验