Rutledge Lesley R, Campbell-Verduyn Lachlan S, Hunter Ken C, Wetmore Stacey D
Department of Chemistry, Mount Allison University, 63C York Street, Sackville, New Brunswick, Canada E4L 1G8.
J Phys Chem B. 2006 Oct 5;110(39):19652-63. doi: 10.1021/jp061939v.
The present work characterizes the gas-phase stacking interactions between four aromatic amino acid residues (histidine, phenylalanine, tyrosine, and tryptophan) and adenine or 3-methyladenine due to the proposed utilization of these interactions by enzymes that repair DNA alkylation damage. The MP2 potential energy surfaces of the stacked dimers are considered as a function of four variables (vertical displacement, angle of rotation, horizontal displacement, and tilt angle) using a variety of basis sets. It is found that the maximum stacking interaction energy decreases with the amino acid according to TRP > TYR approximately HIS > PHE for both nucleobases. However, the magnitude of the stacking interaction significantly increases upon alkylation (by 50-115%). Comparison of the stacking energies calculated using our surface scans to those estimated from experimental crystal structures indicates that the stacking interactions within the active site of 3-methyladenine DNA glycosylase can account for 65-75% of the maximum possible stacking interaction between the relevant molecules. The decrease in stacking in the crystal structure arises due to significant differences in the relative orientations of the nucleobase and amino acid. Nevertheless, alkylation is found to significantly increase the stacking energy when the crystal structure geometries are considered. Our calculations provide computational support for suggestions that alkylation enhances the stacking interactions within the active site of DNA repair enzymes, and they give a measure of the magnitude of this enhancement. Our results suggest that alkylation likely plays a more important role in substrate identification and removal than the nature of the aromatic amino acid that interacts with the substrate via stacking interactions.
由于修复DNA烷基化损伤的酶可能利用这些相互作用,本研究对四个芳香族氨基酸残基(组氨酸、苯丙氨酸、酪氨酸和色氨酸)与腺嘌呤或3-甲基腺嘌呤之间的气相堆积相互作用进行了表征。使用多种基组,将堆积二聚体的MP2势能面视为四个变量(垂直位移、旋转角度、水平位移和倾斜角度)的函数。研究发现,对于两种核碱基,最大堆积相互作用能随氨基酸的变化规律为:色氨酸>酪氨酸≈组氨酸>苯丙氨酸。然而,烷基化后堆积相互作用的强度显著增加(增加50%-115%)。将我们通过表面扫描计算得到的堆积能与从实验晶体结构估计的堆积能进行比较,结果表明,3-甲基腺嘌呤DNA糖基化酶活性位点内的堆积相互作用可占相关分子间最大可能堆积相互作用的65%-75%。晶体结构中堆积作用的减弱是由于核碱基和氨基酸相对取向的显著差异所致。尽管如此,考虑晶体结构几何形状时,烷基化会显著增加堆积能。我们的计算为烷基化增强DNA修复酶活性位点内堆积相互作用的观点提供了计算支持,并给出了这种增强程度的度量。我们的结果表明,烷基化在底物识别和去除中可能比通过堆积相互作用与底物相互作用的芳香族氨基酸的性质发挥更重要的作用。