Mondal Padmabati
Department of Chemistry and Center for Atomic, Molecular and Optical Sciences and Technologies, Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 Andhra Pradesh India
RSC Adv. 2020 Oct 14;10(62):37995-38003. doi: 10.1039/d0ra05559j. eCollection 2020 Oct 12.
Serotonin-receptor binding is the key step in the process behind serotonin functionality, including several psychological and physiological behaviours. This study is focused on identifying the main non-covalent interactions controlling the stability of serotonin-receptor complexes as well as the main conformational changes in the receptor due to serotonin-receptor binding using classical molecular dynamics simulations and quantum chemical calculations. A qualitative analysis based on two order parameters ((i) the centre of mass distance and (ii) the angle between the surface normals of each aromatic residue and serotonin in the binding site) on the serotonin-receptor complex trajectory suggests that the T-type stacking interaction is predominant in the binding site. Quantum chemical calculations of the stacking interaction energy provide the quantitative contributions of important aromatic residues to the stabilization of the complex. Furthermore, a three body stacking interaction (named 'L'-type) was observed and likely contributes to the stability of the complex. Direct and water-mediated hydrogen bonding between the residues in the binding site and serotonin contributes to the complex stability. Principal component analysis of the molecular dynamics simulation trajectory of the serotonin-receptor complex and the apo-receptor in water indicates that the whole receptor is significantly stabilized due to serotonin binding. An analysis based on the dynamic cross correlation function reflects the strong correlation between trans-membrane (TM)3, TM5, TM6 (containing residues responsible for the stacking interaction and hydrogen bonding) and mini-G which may participate in signal transduction leading to the functionality of serotonin.
血清素受体结合是血清素功能背后过程中的关键步骤,包括多种心理和生理行为。本研究聚焦于使用经典分子动力学模拟和量子化学计算,确定控制血清素 - 受体复合物稳定性的主要非共价相互作用,以及由于血清素 - 受体结合导致的受体主要构象变化。基于血清素 - 受体复合物轨迹上的两个序参量((i) 质心距离和 (ii) 结合位点中每个芳香族残基与血清素的表面法线之间的夹角)进行的定性分析表明,T 型堆积相互作用在结合位点中占主导地位。堆积相互作用能的量子化学计算提供了重要芳香族残基对复合物稳定性的定量贡献。此外,还观察到一种三体堆积相互作用(称为“L”型),可能对复合物的稳定性有贡献。结合位点中的残基与血清素之间的直接和水介导的氢键有助于复合物的稳定性。血清素 - 受体复合物和脱辅基受体在水中的分子动力学模拟轨迹的主成分分析表明,由于血清素结合,整个受体显著稳定。基于动态交叉相关函数的分析反映了跨膜(TM)3、TM5、TM6(包含负责堆积相互作用和氢键的残基)与可能参与导致血清素功能的信号转导的小 G 之间的强相关性。