Woolley David, Gadelha Catarina, Gull Keith
Department of Physiology, School of Medical Sciences, University of Bristol, Bristol, United Kingdom.
Cell Motil Cytoskeleton. 2006 Dec;63(12):741-6. doi: 10.1002/cm.20159.
Motility in trypanosomes is achieved through the undulating behaviour of a single "9 + 2" flagellum; normally the flagellar waves begin at the flagellar tip and propagate towards the base. For flagella in general, however, propagation is from base-to-tip and it is believed that bend formation, and sustained regular oscillation, depend upon a localised resistance to inter-doublet sliding - which is normally conferred by structures at the flagellar base, typically the basal body. We therefore predicted that in trypanosomes there must be a resistive structure at the flagellar tip. Electron micrographs of Crithidia deanei, Herpetomonas megaseliae, Trypanosoma brucei and Leishmania major have confirmed that such attachments are present. Thus, it can be assumed that in trypanosomes microtubule sliding at the flagellar tip is resisted sufficiently to permit bend formation.
锥虫的运动是通过单一的“9 + 2”鞭毛的波动行为实现的;通常鞭毛波浪从鞭毛尖端开始并向基部传播。然而,一般来说鞭毛的传播是从基部到尖端,并且据信弯曲的形成以及持续的规则振荡取决于对双联微管滑动的局部阻力——这种阻力通常由鞭毛基部的结构赋予,典型的是基体。因此,我们预测在锥虫中鞭毛尖端必定存在一个阻力结构。迪氏克瑞氏锥虫、大塞尔氏单鞭滴虫、布氏锥虫和硕大利什曼原虫的电子显微镜照片证实了这种附着结构的存在。因此,可以假定在锥虫中鞭毛尖端的微管滑动受到足够的阻力以允许弯曲的形成。