Suppr超能文献

Effect of chemodenervation on the cerebral vascular and microvascular response to hypoxia.

作者信息

Anwar M, Kissen I, Weiss H R

机构信息

Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854-5635.

出版信息

Circ Res. 1990 Dec;67(6):1365-73. doi: 10.1161/01.res.67.6.1365.

Abstract

This study evaluated the effect of bilateral carotid chemodenervation on the cerebrovascular response to hypoxia in conscious rats. Cerebral blood flow was measured using 4-iodo[N-methyl-14C]antipyrine, and the total and perfused microvasculature was studied by injection of fluorescein isothiocyanate dextran and alkaline phosphatase staining. To maintain constant PCO2, hypoxia was achieved in chemoreceptor-intact rats by the use of 4% CO2-8% O2-88% N2 and in chemodenervated rats by the administration of 8% O2-92% N2. Blood gas and hemodynamic parameters were similar in the two groups of rats. Chemodenervation had no significant effect on either resting blood flow or the perfused microvasculature during normoxia. A significant increase in cerebral blood flow (from 71 +/- 3 to 138 +/- 9 ml/min/100 g in control and from 91 +/- 5 to 127 +/- 7 ml/min/100 g in chemodenervated rats) and in the percent of cerebral arterioles and capillaries perfused occurred in both hypoxic control and chemodenervated rats. In chemoreceptor-intact rats, the greatest increase in blood flow and in perfused microvasculature occurred in caudal structures (medulla and pons) in comparison with rostral structures (cortex, thalamus, and hypothalamus). In chemodenervated rats, a similar increase in blood flow and perfused microvasculature occurred in all brain regions, with no regional differences. Thus, chemodenervation did not affect the overall cerebral blood flow or the microvascular response to hypoxia; however, rostral-to-caudal regional differences in the hypoxic response were lost after chemodenervation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验