Suppr超能文献

自动分割作为一种工具,用于检查书写困难儿童和书写熟练儿童的书写过程。

Automatic segmentation as a tool for examining the handwriting process of children with dysgraphic and proficient handwriting.

作者信息

Rosenblum Sara, Dvorkin Assaf Y, Weiss Patrice L

机构信息

Department of Occupational Therapy, Faculty of Social Welfare and Health Studies, University of Haifa, Haifa, Israel.

出版信息

Hum Mov Sci. 2006 Oct;25(4-5):608-21. doi: 10.1016/j.humov.2006.07.005. Epub 2006 Oct 2.

Abstract

The purpose of this study was to use an x-y digitizer to collect handwriting samples typical of those written by the child in his or her natural environment, to analyze these samples with novel segmentation algorithms, and to present them visually in ways that illuminate spatial and temporal dynamic features amongst children with dysgraphic and proficient handwriting. While using the POET software (Penmanship Objective Evaluation Tool), a paragraph was copied onto paper affixed to an x-y digitizer by third-grade students, 14 with proficient and 14 with poor handwriting. A segmentation algorithm was developed to automatically isolate writing segments. Results yielded significant differences between the groups in various measures, including the number of the raw segments (i.e., the number of segments before combined with letters), the number of reverse segments (i.e., when the participant returned to correct or complete a previously written segment), the number of letters per minute, and the mean "In-Air" time between letters. Variability in both the spatial and temporal domains of instances of the same letter throughout the text was greater among the dysgraphic handwriters in comparison to the variability among the proficient. These results demonstrated the potential of using automated analytic techniques and visual display to achieve a more comprehensive understanding of handwriting difficulties.

摘要

本研究的目的是使用xy数字化仪收集儿童在其自然环境中书写的典型笔迹样本,用新颖的分割算法分析这些样本,并以直观的方式呈现它们,以揭示书写困难儿童和书写熟练儿童之间的空间和时间动态特征。在使用POET软件(书法客观评估工具)时,三年级学生将一段文字抄写到粘贴在xy数字化仪上的纸张上,其中14名书写熟练,14名书写较差。开发了一种分割算法来自动分离书写片段。结果显示,两组在各种测量指标上存在显著差异,包括原始片段的数量(即与字母组合之前的片段数量)、反向片段的数量(即参与者返回纠正或完成先前书写的片段时)、每分钟的字母数量以及字母之间的平均“空中”时间。与书写熟练者相比,书写困难者在整个文本中同一字母实例的空间和时间域中的变异性更大。这些结果证明了使用自动分析技术和可视化显示来更全面地理解书写困难的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验