Xia Ying, Javadov Sabzali, Gan Tracey X, Pang Theresa, Cook Michael A, Karmazyn Morris
Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Medical Sciences Building, University of Western Ontario, London, ON, Canada N6A 5C1.
J Pharmacol Exp Ther. 2007 Jan;320(1):14-21. doi: 10.1124/jpet.106.110494. Epub 2006 Sep 29.
Recent evidence suggests that both adenosine receptor (AR) and K ATP channel activation exert antihypertrophic effects in cardiac myocytes. We studied the relative contributions of mitochondrial K ATP (mitoK ATP) and sarcolemmal K ATP (sarcK ATP) to the antihypertrophic effects of ARs in primary cultures of neonatal rat ventricular myocytes exposed for 24 h with the alpha1 adrenoceptor agonist phenylephrine (PE). The A1R agonist N6-cyclopentyladenosine (CPA), the A(2A)R agonist CGS21680 [2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine], and the A3R agonist N6-(3-iodobenzyl)adenosine-5'-methyluronamide (IB-MECA) all prevented PE-induced hypertrophy. Glibenclamide, a nonselective K(ATP) channel blocker reversed the antihypertrophic effect of all three AR agonists as determined by cell size and atrial natriuretic peptide expression and early c-fos up-regulation. In contrast, the mitoK(ATP) blocker 5-hydroxydecanoic acid selectively attenuated the effect of CGS21680 and IB-MECA, whereas HMR1098 [1-[[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl]-3-methylthiourea, sodium salt], a specific blocker of sarcK(ATP), only abolished the antihypertrophic effect of CPA. Moreover, both CGS21680 and IB-MECA but not CPA decreased the mitochondrial membrane potential when PE was present, similarly to that seen with diazoxide, and both agents inhibited PE-stimulated elevation in mitochondrial Ca2+. All AR agonists diminished PE-induced phosphoserine/threonine kinase and protein kinase B up-regulation, which was unaffected by any K(ATP) blocker. Our data suggest that AR-mediated antihypertrophic effects are mediated by distinct K(ATP) channels, with sarcK(ATP) mediating the antihypertrophic effects of A1R activation, whereas mitoK(ATP) activation mediates the antihypertrophic effects of both A(2A)R and A3R agonists.
近期证据表明,腺苷受体(AR)激活和钾离子ATP通道(KATP)激活均对心肌细胞发挥抗肥厚作用。我们研究了线粒体KATP(mitoKATP)和肌膜KATP(sarcKATP)在新生大鼠心室肌细胞原代培养物中,对AR抗肥厚作用的相对贡献,这些细胞用α1肾上腺素能受体激动剂去氧肾上腺素(PE)处理24小时。A1R激动剂N6-环戊基腺苷(CPA)、A(2A)R激动剂CGS21680 [2-p-(2-羧乙基)苯乙胺基-5'-N-乙基羧酰胺腺苷]和A3R激动剂N6-(3-碘苄基)腺苷-5'-甲基脲苷(IB-MECA)均能预防PE诱导的肥厚。格列本脲,一种非选择性K(ATP)通道阻滞剂,通过细胞大小、心房利钠肽表达和早期c-fos上调,逆转了所有三种AR激动剂的抗肥厚作用。相比之下,mitoK(ATP)阻滞剂5-羟基癸酸选择性减弱了CGS21680和IB-MECA的作用,而HMR1098 [1-[[5-[2-(5-氯-邻茴香酰胺基)乙基]-2-甲氧基苯基]磺酰基]-3-甲基硫脲钠盐],一种sarcK(ATP)的特异性阻滞剂,仅消除了CPA的抗肥厚作用。此外,当存在PE时,CGS21680和IB-MECA均降低线粒体膜电位,与二氮嗪的作用相似,且两种药物均抑制PE刺激的线粒体Ca2+升高。所有AR激动剂均减少PE诱导的磷酸丝氨酸/苏氨酸激酶和蛋白激酶B上调,而这不受任何K(ATP)阻滞剂的影响。我们的数据表明,AR介导的抗肥厚作用由不同的K(ATP)通道介导,sarcK(ATP)介导A1R激活的抗肥厚作用,而mitoK(ATP)激活介导A(2A)R和A3R激动剂的抗肥厚作用。