Fuchss K, Wurm A, Apte A, Morrison P J
Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712, USA.
Chaos. 2006 Sep;16(3):033120. doi: 10.1063/1.2338026.
The breakup of shearless invariant tori with winding number omega=(11+gamma)(12+gamma) (in continued fraction representation) of the standard nontwist map is studied numerically using Greene's residue criterion. Tori of this winding number can assume the shape of meanders [folded-over invariant tori which are not graphs over the x axis in (x,y) phase space], whose breakup is the first point of focus here. Secondly, multiple shearless orbits of this winding number can exist, leading to a new type of breakup scenario. Results are discussed within the framework of the renormalization group for area-preserving maps. Regularity of the critical tori is also investigated.
利用格林留数准则对标准非扭转映射中缠绕数为(\omega=(11 + \gamma)(12 + \gamma))(连分数表示)的无剪切不变环面的破裂进行了数值研究。这种缠绕数的环面可以呈现蜿蜒的形状[在((x,y))相空间中不是(x)轴上图形的折叠不变环面],其破裂是这里关注的首要问题。其次,这种缠绕数的多个无剪切轨道可能存在,导致一种新型的破裂情形。在保面积映射的重整化群框架内讨论了结果。还研究了临界环面的正则性。