Suppr超能文献

标准非扭转映射中基于递归的势垒破裂分析。

Recurrence-based analysis of barrier breakup in the standard nontwist map.

作者信息

Santos Moises S, Mugnaine Michele, Szezech José D, Batista Antonio M, Caldas Iberê L, Baptista Murilo S, Viana Ricardo L

机构信息

Pós-Graduação em Ciências, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa, Paraná, Brazil.

Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa, Paraná, Brazil.

出版信息

Chaos. 2018 Aug;28(8):085717. doi: 10.1063/1.5021544.

Abstract

We study the standard nontwist map that describes the dynamic behaviour of magnetic field lines near a local minimum or maximum of frequency. The standard nontwist map has a shearless invariant curve that acts like a barrier in phase space. Critical parameters for the breakup of the shearless curve have been determined by procedures based on the indicator points and bifurcations of periodical orbits, a methodology that demands high computational cost. To determine the breakup critical parameters, we propose a new simpler and general procedure based on the determinism analysis performed on the recurrence plot of orbits near the critical transition. We also show that the coexistence of islands and chaotic sea in phase space can be analysed by using the recurrence plot. In particular, the measurement of determinism from the recurrence plot provides us with a simple procedure to distinguish periodic from chaotic structures in the parameter space. We identify an invariant shearless breakup scenario, and we also show that recurrence plots are useful tools to determine the presence of periodic orbit collisions and bifurcation curves.

摘要

我们研究标准非扭转映射,它描述了频率局部最小值或最大值附近磁力线的动态行为。标准非扭转映射有一条无剪切不变曲线,在相空间中起到屏障的作用。基于指示点和周期轨道分岔的程序已经确定了无剪切曲线破裂的临界参数,该方法需要高昂的计算成本。为了确定破裂临界参数,我们基于对临界转变附近轨道的递归图进行的确定性分析,提出了一种新的更简单且通用的程序。我们还表明,通过使用递归图可以分析相空间中岛和混沌海的共存情况。特别地,从递归图测量确定性为我们提供了一种在参数空间中区分周期性结构和混沌结构的简单程序。我们确定了一种不变的无剪切破裂情形,并且还表明递归图是确定周期轨道碰撞和分岔曲线存在的有用工具。

相似文献

1
Recurrence-based analysis of barrier breakup in the standard nontwist map.
Chaos. 2018 Aug;28(8):085717. doi: 10.1063/1.5021544.
2
Fractal structures in the parameter space of nontwist area-preserving maps.
Phys Rev E. 2019 Nov;100(5-1):052207. doi: 10.1103/PhysRevE.100.052207.
3
Breakup of shearless meanders and "outer" tori in the standard nontwist map.
Chaos. 2006 Sep;16(3):033120. doi: 10.1063/1.2338026.
4
Lagrangian descriptors: The shearless curve and the shearless attractor.
Phys Rev E. 2024 Feb;109(2-1):024202. doi: 10.1103/PhysRevE.109.024202.
5
Secondary nontwist phenomena in area-preserving maps.
Chaos. 2012 Sep;22(3):033142. doi: 10.1063/1.4750040.
6
Meanders and reconnection-collision sequences in the standard nontwist map.
Chaos. 2005 Jun;15(2):23108. doi: 10.1063/1.1915960.
7
Destruction and resurgence of the quasiperiodic shearless attractor.
Phys Rev E. 2021 Jul;104(1-1):014207. doi: 10.1103/PhysRevE.104.014207.
10
Dynamics, multistability, and crisis analysis of a sine-circle nontwist map.
Phys Rev E. 2022 Sep;106(3-1):034203. doi: 10.1103/PhysRevE.106.034203.

引用本文的文献

1
Basin Entropy and Shearless Barrier Breakup in Open Non-Twist Hamiltonian Systems.
Entropy (Basel). 2023 Jul 30;25(8):1142. doi: 10.3390/e25081142.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验