Santos Moises S, Mugnaine Michele, Szezech José D, Batista Antonio M, Caldas Iberê L, Baptista Murilo S, Viana Ricardo L
Pós-Graduação em Ciências, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa, Paraná, Brazil.
Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa, Paraná, Brazil.
Chaos. 2018 Aug;28(8):085717. doi: 10.1063/1.5021544.
We study the standard nontwist map that describes the dynamic behaviour of magnetic field lines near a local minimum or maximum of frequency. The standard nontwist map has a shearless invariant curve that acts like a barrier in phase space. Critical parameters for the breakup of the shearless curve have been determined by procedures based on the indicator points and bifurcations of periodical orbits, a methodology that demands high computational cost. To determine the breakup critical parameters, we propose a new simpler and general procedure based on the determinism analysis performed on the recurrence plot of orbits near the critical transition. We also show that the coexistence of islands and chaotic sea in phase space can be analysed by using the recurrence plot. In particular, the measurement of determinism from the recurrence plot provides us with a simple procedure to distinguish periodic from chaotic structures in the parameter space. We identify an invariant shearless breakup scenario, and we also show that recurrence plots are useful tools to determine the presence of periodic orbit collisions and bifurcation curves.
我们研究标准非扭转映射,它描述了频率局部最小值或最大值附近磁力线的动态行为。标准非扭转映射有一条无剪切不变曲线,在相空间中起到屏障的作用。基于指示点和周期轨道分岔的程序已经确定了无剪切曲线破裂的临界参数,该方法需要高昂的计算成本。为了确定破裂临界参数,我们基于对临界转变附近轨道的递归图进行的确定性分析,提出了一种新的更简单且通用的程序。我们还表明,通过使用递归图可以分析相空间中岛和混沌海的共存情况。特别地,从递归图测量确定性为我们提供了一种在参数空间中区分周期性结构和混沌结构的简单程序。我们确定了一种不变的无剪切破裂情形,并且还表明递归图是确定周期轨道碰撞和分岔曲线存在的有用工具。