Suppr超能文献

枯草芽孢杆菌中Rex(YdiH)对NADH/NAD⁺ 比值的氧化还原感应与NADH脱氢酶Ndh对NADH的氧化之间的调控环路

Regulatory loop between redox sensing of the NADH/NAD(+) ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis.

作者信息

Gyan Smita, Shiohira Yoshihiko, Sato Ichiro, Takeuchi Michio, Sato Tsutomu

机构信息

International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.

出版信息

J Bacteriol. 2006 Oct;188(20):7062-71. doi: 10.1128/JB.00601-06.

Abstract

NADH dehydrogenase is a key component of the respiratory chain. It catalyzes the oxidation of NADH by transferring electrons to ubiquinone and establishes a proton motive force across the cell membrane. The yjlD (renamed ndh) gene of Bacillus subtilis is predicted to encode an enzyme similar to the NADH dehydrogenase II of Escherichia coli, encoded by the ndh gene. We have shown that the yjlC-ndh operon is negatively regulated by YdiH (renamed Rex), a homolog of Rex in Streptomyces coelicolor, and a redox-sensing transcriptional regulator that responds to the NADH/NAD(+) ratio. The ndh gene regulates expression of the yjlC-ndh operon, as indicated by the fact that mutation in ndh causes a higher NADH/NAD(+) ratio. An in vitro study showed that Rex binds to the downstream region of the yjlC-ndh promoter and that NAD(+) enhances the binding of Rex to the putative Rex-binding sites in the yjlC-ndh operon as well as in the cydABCD operon. These results indicated that Rex and Ndh together form a regulatory loop which functions to prevent a large fluctuation in the NADH/NAD(+) ratio in B. subtilis.

摘要

NADH脱氢酶是呼吸链的关键组成部分。它通过将电子转移至泛醌来催化NADH的氧化,并在细胞膜上建立质子动力。枯草芽孢杆菌的yjlD(重新命名为ndh)基因预计编码一种与大肠杆菌的NADH脱氢酶II相似的酶,后者由ndh基因编码。我们已经表明,yjlC-ndh操纵子受到YdiH(重新命名为Rex)的负调控,YdiH是天蓝色链霉菌中Rex的同源物,是一种对NADH/NAD(+)比值作出反应的氧化还原感应转录调节因子。ndh基因调节yjlC-ndh操纵子的表达,这一事实表明ndh中的突变会导致更高的NADH/NAD(+)比值。一项体外研究表明,Rex与yjlC-ndh启动子的下游区域结合,并且NAD(+)增强了Rex与yjlC-ndh操纵子以及cydABCD操纵子中假定Rex结合位点的结合。这些结果表明,Rex和Ndh共同形成一个调节环,其功能是防止枯草芽孢杆菌中NADH/NAD(+)比值出现大幅波动。

相似文献

3
Coordinated patterns of cytochrome bd and lactate dehydrogenase expression in Bacillus subtilis.
Microbiology (Reading). 2005 Oct;151(Pt 10):3323-3335. doi: 10.1099/mic.0.28124-0.
4
Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex.
Mol Microbiol. 2008 Jul;69(2):466-78. doi: 10.1111/j.1365-2958.2008.06295.x.
5
A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A3(2).
EMBO J. 2003 Sep 15;22(18):4856-65. doi: 10.1093/emboj/cdg453.
7
PdhR (pyruvate dehydrogenase complex regulator) controls the respiratory electron transport system in Escherichia coli.
J Bacteriol. 2007 Aug;189(15):5534-41. doi: 10.1128/JB.00229-07. Epub 2007 May 18.
9
Bacillus subtilis YdiH is a direct negative regulator of the cydABCD operon.
J Bacteriol. 2004 Jul;186(14):4585-95. doi: 10.1128/JB.186.14.4585-4595.2004.
10

引用本文的文献

1
Crp and Arc system directly regulate the transcription of NADH dehydrogenase genes in nitrate and nitrite respiration.
Microbiol Spectr. 2025 Jul;13(7):e0332424. doi: 10.1128/spectrum.03324-24. Epub 2025 May 16.
2
Understanding energy fluctuation during the transition state: The role of AbrB in Bacillus licheniformis.
Microb Cell Fact. 2024 Nov 4;23(1):296. doi: 10.1186/s12934-024-02572-1.
3
MOB rules: Antibiotic Exposure Reprograms Metabolism to Mobilize in Competitive Interactions.
bioRxiv. 2024 Mar 20:2024.03.20.585991. doi: 10.1101/2024.03.20.585991.
4
Separation and analysis of Bacillus subtilis respiratory chain complexes.
J Bioenerg Biomembr. 2022 Dec;54(5-6):251-271. doi: 10.1007/s10863-022-09951-6. Epub 2022 Nov 23.
5
The Membrane Proteome of Spores and Vegetative Cells of the Food-Borne Pathogen .
Int J Mol Sci. 2021 Nov 19;22(22):12475. doi: 10.3390/ijms222212475.
6
Microbial Lipopeptide-Producing Strains and Their Metabolic Roles under Anaerobic Conditions.
Microorganisms. 2021 Sep 25;9(10):2030. doi: 10.3390/microorganisms9102030.
7
A short chain fatty acid-centric view of Clostridioides difficile pathogenesis.
PLoS Pathog. 2021 Oct 21;17(10):e1009959. doi: 10.1371/journal.ppat.1009959. eCollection 2021 Oct.
8
Understanding Metabolic Remodeling in to Overcome Energy Exigency and Reductive Stress Under Energy-Compromised State.
Front Microbiol. 2021 Sep 1;12:722229. doi: 10.3389/fmicb.2021.722229. eCollection 2021.
9
The redox-responsive transcriptional regulator Rex represses fermentative metabolism and is required for Listeria monocytogenes pathogenesis.
PLoS Pathog. 2021 Aug 16;17(8):e1009379. doi: 10.1371/journal.ppat.1009379. eCollection 2021 Aug.
10
Bacterial approaches to sensing and responding to respiration and respiration metabolites.
Mol Microbiol. 2021 Oct;116(4):1009-1021. doi: 10.1111/mmi.14795. Epub 2021 Aug 25.

本文引用的文献

1
The Fnr regulon of Bacillus subtilis.
J Bacteriol. 2006 Feb;188(3):1103-12. doi: 10.1128/JB.188.3.1103-1112.2006.
2
Coordinated patterns of cytochrome bd and lactate dehydrogenase expression in Bacillus subtilis.
Microbiology (Reading). 2005 Oct;151(Pt 10):3323-3335. doi: 10.1099/mic.0.28124-0.
4
New insights into type II NAD(P)H:quinone oxidoreductases.
Microbiol Mol Biol Rev. 2004 Dec;68(4):603-16. doi: 10.1128/MMBR.68.4.603-616.2004.
6
Bacillus subtilis YdiH is a direct negative regulator of the cydABCD operon.
J Bacteriol. 2004 Jul;186(14):4585-95. doi: 10.1128/JB.186.14.4585-4595.2004.
8
A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A3(2).
EMBO J. 2003 Sep 15;22(18):4856-65. doi: 10.1093/emboj/cdg453.
9
Mutation in yaaT leads to significant inhibition of phosphorelay during sporulation in Bacillus subtilis.
J Bacteriol. 2002 Oct;184(20):5545-53. doi: 10.1128/JB.184.20.5545-5553.2002.
10
Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions.
J Bacteriol. 2000 Aug;182(16):4458-65. doi: 10.1128/JB.182.16.4458-4465.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验