Suppr超能文献

在铜含量升高的环境中的存活与生长:铜胁迫下铜绿假单胞菌的转录谱分析

Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa.

作者信息

Teitzel Gail M, Geddie Ashley, De Long Susan K, Kirisits Mary Jo, Whiteley Marvin, Parsek Matthew R

机构信息

Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

J Bacteriol. 2006 Oct;188(20):7242-56. doi: 10.1128/JB.00837-06.

Abstract

Transcriptional profiles of Pseudomonas aeruginosa exposed to two separate copper stress conditions were determined. Actively growing bacteria subjected to a pulse of elevated copper for a short period of time was defined as a "copper-shocked" culture. Conversely, copper-adapted populations were defined as cells actively growing in the presence of elevated copper. Expression of 405 genes changed in the copper-shocked culture, compared to 331 genes for the copper-adapted cultures. Not surprisingly, there were genes identified in common to both conditions. For example, both stress conditions resulted in up-regulation of genes encoding several active transport functions. However, there were some interesting differences between the two types of stress. Only copper-adapted cells significantly altered expression of passive transport functions, down-regulating expression of several porins belonging to the OprD family. Copper shock produced expression profiles suggestive of an oxidative stress response, probably due to the participation of copper in Fenton-like chemistry. Copper-adapted populations did not show such a response. Transcriptional profiles also indicated that iron acquisition is fine-tuned in the presence of copper. Several genes induced under iron-limiting conditions, such as the siderophore pyoverdine, were up-regulated in copper-adapted populations. Interesting exceptions were the genes involved in the production of the siderophore pyochelin, which were down-regulated. Analysis of the copper sensitivity of select mutant strains confirmed the array data. These studies suggest that two resistance nodulation division efflux systems, a P-type ATPase, and a two-component regulator were particularly important for copper tolerance in P. aeruginosa.

摘要

测定了铜绿假单胞菌在两种不同铜胁迫条件下的转录谱。将短期受到铜浓度升高脉冲作用的活跃生长细菌定义为“铜冲击”培养物。相反,铜适应群体定义为在铜浓度升高情况下活跃生长的细胞。与铜适应培养物中的331个基因相比,“铜冲击”培养物中有405个基因的表达发生了变化。不出所料,两种条件下都鉴定出了一些共同的基因。例如,两种胁迫条件都导致编码几种主动运输功能的基因上调。然而,两种胁迫类型之间存在一些有趣的差异。只有铜适应细胞显著改变了被动运输功能的表达,下调了属于OprD家族的几种孔蛋白的表达。铜冲击产生的表达谱表明存在氧化应激反应,这可能是由于铜参与了类芬顿化学反应。铜适应群体没有表现出这种反应。转录谱还表明,在有铜存在的情况下,铁的获取得到了精细调节。在铁限制条件下诱导的几个基因,如铁载体绿脓菌素,在铜适应群体中上调。有趣的例外是参与铁载体焦铜素产生的基因,这些基因被下调。对选定突变株的铜敏感性分析证实了阵列数据。这些研究表明,两个耐药结节分裂外排系统、一个P型ATP酶和一个双组分调节因子对铜绿假单胞菌的耐铜性尤为重要。

相似文献

2
A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa.
J Bacteriol. 2007 Jul;189(13):4561-8. doi: 10.1128/JB.00095-07. Epub 2007 Apr 20.
3
The Pseudomonas aeruginosa pirA gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues.
FEMS Microbiol Lett. 2005 May 15;246(2):167-74. doi: 10.1016/j.femsle.2005.04.010.
4
Global transcriptional responses to triclosan exposure in Pseudomonas aeruginosa.
Int J Antimicrob Agents. 2012 Aug;40(2):114-22. doi: 10.1016/j.ijantimicag.2012.04.008. Epub 2012 Jun 15.
6
7
Copper homeostasis networks in the bacterium .
J Biol Chem. 2017 Sep 22;292(38):15691-15704. doi: 10.1074/jbc.M117.804492. Epub 2017 Jul 31.
8
Transcriptome analysis of the Pseudomonas aeruginosa response to iron.
Arch Microbiol. 2003 Nov;180(5):374-9. doi: 10.1007/s00203-003-0602-z. Epub 2003 Sep 26.
9
Loss of the oxidative stress regulator OxyR in Pseudomonas aeruginosa PAO1 impairs growth under iron-limited conditions.
FEMS Microbiol Lett. 2008 Nov;288(2):258-65. doi: 10.1111/j.1574-6968.2008.01360.x.
10

引用本文的文献

1
Comparison of single bacteria and a bacterial reference community in a test against coated surfaces of varying copper content.
Front Microbiol. 2025 Aug 26;16:1659828. doi: 10.3389/fmicb.2025.1659828. eCollection 2025.
2
The CueR-regulated transporters CopA and CusFABC coordinate copper detoxification in .
Virulence. 2025 Dec;16(1):2545557. doi: 10.1080/21505594.2025.2545557. Epub 2025 Aug 11.
3
The iron metalloproteome of Pseudomonas aeruginosa under oxic and anoxic conditions.
Metallomics. 2025 Jul 9;17(7). doi: 10.1093/mtomcs/mfaf023.
7
The Iron Metalloproteome of Pseudomonas aeruginosa Under Oxic and Anoxic Conditions.
bioRxiv. 2025 May 15:2025.01.15.633287. doi: 10.1101/2025.01.15.633287.
9
EF-hand calcium sensor, EfhP, controls transcriptional regulation of iron uptake by calcium in .
mBio. 2024 Nov 13;15(11):e0244724. doi: 10.1128/mbio.02447-24. Epub 2024 Oct 22.
10
Non-classical roles of bacterial siderophores in pathogenesis.
Front Cell Infect Microbiol. 2024 Sep 20;14:1465719. doi: 10.3389/fcimb.2024.1465719. eCollection 2024.

本文引用的文献

1
Microbial resistance to heavy metals.
Environ Sci Technol. 1983 Dec 1;17(12):582A-90A. doi: 10.1021/es00118a717.
3
Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC.
J Biol Chem. 2005 Oct 7;280(40):33785-91. doi: 10.1074/jbc.M505742200. Epub 2005 Aug 8.
4
Genetic and physiological responses of Bacillus subtilis to metal ion stress.
Mol Microbiol. 2005 Jul;57(1):27-40. doi: 10.1111/j.1365-2958.2005.04642.x.
5
Bacterial resistance to antibiotics: active efflux and reduced uptake.
Adv Drug Deliv Rev. 2005 Jul 29;57(10):1486-513. doi: 10.1016/j.addr.2005.04.004.
6
Effect of anaerobiosis and nitrate on gene expression in Pseudomonas aeruginosa.
Infect Immun. 2005 Jun;73(6):3764-72. doi: 10.1128/IAI.73.6.3764-3772.2005.
7
New developments in the understanding of the cation diffusion facilitator family.
J Ind Microbiol Biotechnol. 2005 Jun;32(6):215-26. doi: 10.1007/s10295-005-0224-3. Epub 2005 May 12.
8
The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations.
Microbiology (Reading). 2005 Apr;151(Pt 4):1187-98. doi: 10.1099/mic.0.27650-0.
9
10
Role of the extracytoplasmic function protein family sigma factor RpoE in metal resistance of Escherichia coli.
J Bacteriol. 2005 Apr;187(7):2297-307. doi: 10.1128/JB.187.7.2297-2307.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验