de Ruiter Cornelis J, Van Leeuwen Daniel, Heijblom Arjan, Bobbert Maarten F, de Haan Arnold
Institute for Fundamental and Clinical Human Movement Sciences, Vrije University, Amsterdam, the Netherlands.
Med Sci Sports Exerc. 2006 Oct;38(10):1843-52. doi: 10.1249/01.mss.0000227644.14102.50.
We hypothesized that the initial rate (first 40 ms) of unilateral knee extensor torque development during a maximally fast isometric contraction would depend on the subjects' ability for fast neural activation and that it would predict bilateral jumping performance.
Nine males (21.8 +/- 0.9 yr, means +/- SD) performed unilateral fast isometric knee extensions (120 degrees knee angle) without countermovement on a dynamometer and bilateral squat jumps (SJ) and countermovement jumps (CMJ) starting from 90 and 120 degrees knee angles (full extension = 180 degrees ). The dynamometer contractions started either from full relaxation or from an isometric pre-tension (15% maximal isometric torque, Tmax). Torque time integral for the first 40 ms after torque onset (TTI-40, normalized to Tmax) and averaged normalized rectified knee extensor EMG for 40 ms before fast torque onset (EMG-40) were used to quantify initial torque rise and voluntary muscle activation.
TTI-40 without pre-tension (range: 0.02-0.19% Tmax per second) was significantly lower than TTI-40 with pre-tension, and both were significantly (r = 0.81 and 0.80) related to EMG-40. During jumping, similar significant positive relations were found between jump height and knee extensor EMG during the first 100 ms of the rise in ground reaction force. There also were significant positive linear relations between dynamometer TTI-40 and jump height (r = 0.75 (SJ 90), 0.84 (SJ 120), 0.76 (CMJ 90), and 0.86 (CMJ 120)) but not between dynamometer Tmax and jump height (-0.16 < r < 0.02).
One-legged TTI-40 to a large extent explained the variation in jump height. The ability to produce a high efferent neural drive before muscle contraction seemed to dominate performance in both the simple single-joint isometric task and the complex multijoint dynamic task.
我们假设,在最大速度等长收缩过程中,单侧膝关节伸肌扭矩发展的初始速率(前40毫秒)将取决于受试者快速神经激活的能力,并且它将预测双侧跳跃表现。
九名男性(21.8±0.9岁,平均值±标准差)在测力计上进行单侧快速等长膝关节伸展(膝关节角度120度)且无反向运动,以及从90度和120度膝关节角度(完全伸展=180度)开始的双侧深蹲跳(SJ)和反向运动跳(CMJ)。测力计收缩从完全放松或等长预紧(15%最大等长扭矩,Tmax)开始。扭矩开始后前40毫秒的扭矩时间积分(TTI-40,归一化为Tmax)以及快速扭矩开始前40毫秒的平均归一化整流膝关节伸肌肌电图(EMG-40)用于量化初始扭矩上升和自主肌肉激活。
无预紧时的TTI-40(范围:每秒0.02-0.19%Tmax)显著低于有预紧时的TTI-40,且两者均与EMG-40显著相关(r=0.81和0.80)。在跳跃过程中,在地面反作用力上升的前100毫秒内,跳跃高度与膝关节伸肌肌电图之间发现了类似的显著正相关。测力计TTI-40与跳跃高度之间也存在显著的正线性关系(r=0.75(SJ 90度)、0.84(SJ 120度)、0.76(CMJ 90度)和0.86(CMJ 120度)),但测力计Tmax与跳跃高度之间不存在这种关系(-0.16<r<0.02)。
单腿TTI-40在很大程度上解释了跳跃高度的变化。在肌肉收缩前产生高传出神经驱动的能力似乎在简单的单关节等长任务和复杂的多关节动态任务中都主导着表现。