Suppr超能文献

用于纤维内镜获取图像的自动自适应增强

Automatic adaptive enhancement for images obtained with fiberscopic endoscopes.

作者信息

Winter Christian, Rupp Stephan, Elter Matthias, Münzenmayer Christian, Gerhäuser Heinz, Wittenberg Thomas

机构信息

Friedrich-Alexander University, Erlangen-Nuremberg 910548, Germany.

出版信息

IEEE Trans Biomed Eng. 2006 Oct;53(10):2035-46. doi: 10.1109/TBME.2006.877110.

Abstract

Modern techniques for medical diagnostics and therapy in keyhole surgery scenarios as well as technical inspection make use of flexible endoscopes. Their characteristic bendable image conductor consists of a very limited number of coated fibers, which leads to so-called comb structure. This effect has a negative impact on further image processing steps such as feature tracking because these overlaid image structures are wrongly detected as image features. With respect to these tasks, we propose an automatic approach to generate optimal spectral filter masks for enhancement of fiberscopic images. We apply the Nyquist-Shannon sampling theorem to the spectrum of fiberscopically acquired images to obtain parameters for optimal filter mask calculation. This can be done automatically and independently of scale and resolution of the image conductor as well as type and resolution of the image sensor. We designed and verified simple rotation invariant masks as well as star-shaped rotation variant masks that contain information about orientation between the fiberscope and sensor. A subjective survey among experts between different modes of filtering certified the best results to the adapted star-shaped mask for high-quality glass fiberscopes. We furthermore define an objective metric to evaluate the results of different filter approaches, which verifies the results of the subjective survey. The proposed approach enables the automated reduction of fiberscopic comb structure. It is adaptive to arbitrary endoscope and sensor combinations. The results give the prospect of a large field of possible applications to reduce fiberscopic structure both for visual optimization in clinical environments and for further digital imaging tasks.

摘要

现代医学诊断和治疗技术在微创手术场景以及技术检查中都要用到柔性内窥镜。其具有代表性的可弯曲图像传导器由数量非常有限的涂层纤维组成,这就导致了所谓的梳状结构。这种效应会对诸如特征跟踪等后续图像处理步骤产生负面影响,因为这些重叠的图像结构会被错误地检测为图像特征。针对这些任务,我们提出了一种自动方法来生成最佳光谱滤光片掩膜,以增强纤维内窥镜图像。我们将奈奎斯特 - 香农采样定理应用于纤维内窥镜采集图像的光谱,以获取用于最佳滤光片掩膜计算的参数。这可以自动完成,且与图像传导器的尺寸和分辨率以及图像传感器的类型和分辨率无关。我们设计并验证了简单的旋转不变掩膜以及包含纤维内窥镜与传感器之间方向信息的星形旋转可变掩膜。在专家之间针对不同滤波模式进行的主观调查表明,对于高质量玻璃纤维内窥镜,适配的星形掩膜效果最佳。我们还定义了一个客观指标来评估不同滤波方法的结果,这验证了主观调查的结果。所提出的方法能够自动减少纤维内窥镜的梳状结构。它适用于任意内窥镜和传感器组合。这些结果为在临床环境中进行视觉优化以及进一步的数字成像任务等减少纤维内窥镜结构的大量可能应用领域带来了前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验