Suppr超能文献

纤维束内窥成像计算:综述。

Image computing for fibre-bundle endomicroscopy: A review.

机构信息

Institute of Sensors, Signals and Systems (ISSS), Heriot Watt University, EH14 4AS, UK; EPSRC IRC "Hub" in Optical Molecular Sensing & Imaging, MRC Centre for Inflammation Research, Queen's Medical Research Institute (QMRI), University of Edinburgh, EH16 4TJ, UK.

EPSRC IRC "Hub" in Optical Molecular Sensing & Imaging, MRC Centre for Inflammation Research, Queen's Medical Research Institute (QMRI), University of Edinburgh, EH16 4TJ, UK.

出版信息

Med Image Anal. 2020 May;62:101620. doi: 10.1016/j.media.2019.101620. Epub 2019 Dec 25.

Abstract

Endomicroscopy is an emerging imaging modality, that facilitates the acquisition of in vivo, in situ optical biopsies, assisting diagnostic and potentially therapeutic interventions. While there is a diverse and constantly expanding range of commercial and experimental optical biopsy platforms available, fibre-bundle endomicroscopy is currently the most widely used platform and is approved for clinical use in a range of clinical indications. Miniaturised, flexible fibre-bundles, guided through the working channel of endoscopes, needles and catheters, enable high-resolution imaging across a variety of organ systems. Yet, the nature of image acquisition though a fibre-bundle gives rise to several inherent characteristics and limitations necessitating novel and effective image pre- and post-processing algorithms, ranging from image formation, enhancement and mosaicing to pathology detection and quantification. This paper introduces the underlying technology and most prevalent clinical applications of fibre-bundle endomicroscopy, and provides a comprehensive, up-to-date, review of relevant image reconstruction, analysis and understanding/inference methodologies. Furthermore, current limitations as well as future challenges and opportunities in fibre-bundle endomicroscopy computing are identified and discussed.

摘要

内窥式显微技术是一种新兴的成像方式,它能够实现体内原位光学活检,辅助诊断和潜在的治疗干预。虽然有各种各样的商业和实验性光学活检平台可供选择,但纤维束内窥式显微技术是目前应用最广泛的平台,并已批准在多种临床适应症中临床使用。微型化、柔性的纤维束,通过内窥镜、针和导管的工作通道引导,能够在各种器官系统中实现高分辨率成像。然而,通过纤维束进行图像采集的性质导致了一些固有特征和限制,需要新的和有效的图像预处理和后处理算法,从图像形成、增强和拼接,到病理学检测和定量。本文介绍了纤维束内窥式显微技术的基本技术和最常见的临床应用,并对相关的图像重建、分析和理解/推断方法进行了全面、最新的综述。此外,还确定并讨论了纤维束内窥式显微技术计算目前的局限性以及未来的挑战和机遇。

相似文献

1
Image computing for fibre-bundle endomicroscopy: A review.纤维束内窥成像计算:综述。
Med Image Anal. 2020 May;62:101620. doi: 10.1016/j.media.2019.101620. Epub 2019 Dec 25.
6
Confocal endomicroscopy: instrumentation and medical applications.共聚焦内镜:仪器和医学应用。
Ann Biomed Eng. 2012 Feb;40(2):378-97. doi: 10.1007/s10439-011-0426-y. Epub 2011 Oct 13.
8
In vivo micro-image mosaicing.体内微图像拼接。
IEEE Trans Biomed Eng. 2011 Jan;58(1):159-71. doi: 10.1109/TBME.2010.2085082. Epub 2010 Oct 7.
9
Targeted optical biopsies for surveillance endoscopies.用于监测内镜检查的靶向光学活检。
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):83-90. doi: 10.1007/978-3-642-23626-6_11.

引用本文的文献

4
Magnetically actuatable 3D-printed endoscopic microsystems.磁驱动3D打印内镜微系统
Commun Eng. 2025 Apr 9;4(1):69. doi: 10.1038/s44172-025-00403-8.

本文引用的文献

1
Improving Multi-class Classification for Endomicroscopic Images by Semi-supervised Learning.通过半监督学习改进内镜微观图像的多类别分类
IEEE EMBS Int Conf Biomed Health Inform. 2017 Feb;2017. doi: 10.1109/bhi.2017.7897191. Epub 2017 Apr 13.
5
Quantitative characterization of endoscopic imaging fibers.内镜成像纤维的定量表征
Opt Express. 2017 Feb 6;25(3):1985-1992. doi: 10.1364/OE.25.001985.
7
Peptides for optical medical imaging and steps towards therapy.用于光学医学成像的肽及迈向治疗的步骤。
Bioorg Med Chem. 2018 Jun 1;26(10):2816-2826. doi: 10.1016/j.bmc.2017.09.039. Epub 2017 Sep 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验