Suppr超能文献

容量调节受损是对补体兴奋性毒性致敏的机制。

Impaired volume regulation is the mechanism of excitotoxic sensitization to complement.

作者信息

Loo Li Shen, McNamara James O

机构信息

Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.

出版信息

J Neurosci. 2006 Oct 4;26(40):10177-87. doi: 10.1523/JNEUROSCI.2628-06.2006.

Abstract

Previous work demonstrated that a brief, sublethal excitotoxic insult strikingly increased the sensitivity of cortical neurons to the cytotoxic effects of the terminal pathway of complement, a process termed "excitotoxic sensitization." Here, we sought to elucidate the cellular mechanism of excitotoxic sensitization in embryonic rat cortical neurons in vitro. Excitotoxic sensitization did not increase membrane attack complex deposition on cortical neurons and produced only a small reduction of membrane attack complex removal, because of a selective decrease of endocytic elimination. Membrane attack complexes and other osmotic stressors, namely hypotonic stress and glutamate, induced transient swelling of cortical neurons, followed by return to normal volume despite persistence of the stressor, a homeostatic response termed regulatory volume decrease (RVD). A minimal excitotoxic insult impaired this homeostatic response and sensitized neurons to cytotoxic effects of diverse osmotic stressors. Structurally distinct membrane-impermeable osmolytes, dextran and polyethylene glycol, prevented excitotoxic sensitization to diverse osmotic stressors including membrane attack complexes. Paraquat, a reactive oxygen species generator, alone was sufficient to impair RVD, and MnTBAP [Mn(III)tetrakis(4-benzoic acid)porphyrin chloride], a reactive oxygen species scavenger, prevented excitotoxin-mediated impairment of RVD. Together, these findings demonstrate that impairment of RVD is the mechanism of excitotoxic sensitization, that reactive oxygen species alone are sufficient to impair RVD, and that reactive oxygen species are necessary for excitotoxic sensitization-mediated impairment of RVD.

摘要

先前的研究表明,短暂的亚致死性兴奋性毒性损伤显著增加了皮质神经元对补体终末途径细胞毒性作用的敏感性,这一过程被称为“兴奋性毒性致敏”。在此,我们试图阐明体外培养的胚胎大鼠皮质神经元中兴奋性毒性致敏的细胞机制。兴奋性毒性致敏并未增加膜攻击复合物在皮质神经元上的沉积,且由于内吞清除的选择性降低,仅使膜攻击复合物的清除略有减少。膜攻击复合物和其他渗透应激源,即低渗应激和谷氨酸,可诱导皮质神经元短暂肿胀,随后尽管应激源持续存在,细胞体积仍恢复正常,这是一种被称为调节性容积减小(RVD)的稳态反应。最小程度的兴奋性毒性损伤会损害这种稳态反应,并使神经元对各种渗透应激源的细胞毒性作用敏感。结构不同的膜不可渗透渗透剂,葡聚糖和聚乙二醇,可预防对包括膜攻击复合物在内的各种渗透应激源的兴奋性毒性致敏。百草枯,一种活性氧产生剂,单独就足以损害RVD,而活性氧清除剂MnTBAP [四(4-苯甲酸)锰(III)氯化卟啉]可预防兴奋性毒素介导的RVD损伤。这些发现共同表明,RVD受损是兴奋性毒性致敏的机制,单独的活性氧就足以损害RVD,且活性氧是兴奋性毒性致敏介导的RVD损伤所必需的。

相似文献

本文引用的文献

3
Ischemic tolerance.缺血耐受
J Cereb Blood Flow Metab. 2002 Nov;22(11):1283-96. doi: 10.1097/01.WCB.0000040942.89393.88.
6
Complement. First of two parts.补体。两部分中的第一部分。
N Engl J Med. 2001 Apr 5;344(14):1058-66. doi: 10.1056/NEJM200104053441406.
8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验