Suppr超能文献

真核生物的荚膜多糖在细胞内合成并通过胞吐作用分泌。

A eukaryotic capsular polysaccharide is synthesized intracellularly and secreted via exocytosis.

作者信息

Yoneda Aki, Doering Tamara L

机构信息

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

Mol Biol Cell. 2006 Dec;17(12):5131-40. doi: 10.1091/mbc.e06-08-0701. Epub 2006 Oct 4.

Abstract

Cryptococcus neoformans, which causes fatal infection in immunocompromised individuals, has an elaborate polysaccharide capsule surrounding its cell wall. The cryptococcal capsule is the major virulence factor of this fungal organism, but its biosynthetic pathways are virtually unknown. Extracellular polysaccharides of eukaryotes may be made at the cell membrane or within the secretory pathway. To test these possibilities for cryptococcal capsule synthesis, we generated a secretion mutant in C. neoformans by mutating a Sec4/Rab8 GTPase homolog. At a restrictive temperature, the mutant displayed reduced growth and protein secretion, and accumulated approximately 100-nm vesicles in a polarized manner. These vesicles were not endocytic, as shown by their continued accumulation in the absence of polymerized actin, and could be labeled with anti-capsular antibodies as visualized by immunoelectron microscopy. These results indicate that glucuronoxylomannan, the major cryptococcal capsule polysaccharide, is trafficked within post-Golgi secretory vesicles. This strongly supports the conclusion that cryptococcal capsule is synthesized intracellularly and secreted via exocytosis.

摘要

新型隐球菌可在免疫功能低下的个体中引发致命感染,其细胞壁周围有一层复杂的多糖荚膜。隐球菌荚膜是这种真菌病原体的主要毒力因子,但其生物合成途径几乎完全未知。真核生物的细胞外多糖可能在细胞膜上或分泌途径中合成。为了验证这些关于隐球菌荚膜合成的可能性,我们通过突变一种Sec4/Rab8 GTP酶同源物,在新型隐球菌中构建了一个分泌突变体。在限制温度下,该突变体生长和蛋白质分泌减少,并以极化方式积累了约100纳米的囊泡。这些囊泡不是内吞性的,因为在没有聚合肌动蛋白的情况下它们仍持续积累,并且通过免疫电子显微镜观察,它们可以用抗荚膜抗体标记。这些结果表明,主要的隐球菌荚膜多糖葡糖醛酸木甘露聚糖是在高尔基体后分泌囊泡内运输的。这有力地支持了隐球菌荚膜在细胞内合成并通过胞吐作用分泌的结论。

相似文献

1
A eukaryotic capsular polysaccharide is synthesized intracellularly and secreted via exocytosis.
Mol Biol Cell. 2006 Dec;17(12):5131-40. doi: 10.1091/mbc.e06-08-0701. Epub 2006 Oct 4.
4
Role of the Apt1 protein in polysaccharide secretion by Cryptococcus neoformans.
Eukaryot Cell. 2014 Jun;13(6):715-26. doi: 10.1128/EC.00273-13. Epub 2013 Dec 13.
6
An unusual organelle in Cryptococcus neoformans links luminal pH and capsule biosynthesis.
Fungal Genet Biol. 2009 Sep;46(9):682-7. doi: 10.1016/j.fgb.2009.05.001. Epub 2009 May 18.
7
Role for Golgi reassembly and stacking protein (GRASP) in polysaccharide secretion and fungal virulence.
Mol Microbiol. 2011 Jul;81(1):206-18. doi: 10.1111/j.1365-2958.2011.07686.x. Epub 2011 May 18.

引用本文的文献

1
Virulence factors released by extracellular vesicles from .
Front Cell Infect Microbiol. 2025 May 14;15:1572520. doi: 10.3389/fcimb.2025.1572520. eCollection 2025.
4
Cell wall melanin impedes growth of the polysaccharide capsule by sequestering calcium.
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2412534121. doi: 10.1073/pnas.2412534121. Epub 2024 Sep 11.
5
Phosphate availability conditions caspofungin tolerance, capsule attachment and titan cell formation in .
Front Fungal Biol. 2024 Aug 14;5:1447588. doi: 10.3389/ffunb.2024.1447588. eCollection 2024.
6
Loss of the putative Rab GTPase, Ypt7, impairs the virulence of .
Front Microbiol. 2024 Jul 25;15:1437579. doi: 10.3389/fmicb.2024.1437579. eCollection 2024.
7
Sac1 links phosphoinositide turnover to cryptococcal virulence.
mBio. 2024 Aug 14;15(8):e0149624. doi: 10.1128/mbio.01496-24. Epub 2024 Jul 2.
8
Host-Pathogen Interactions and Correlated Factors That Are Affected in Replicative-Aged .
J Fungi (Basel). 2024 Apr 10;10(4):279. doi: 10.3390/jof10040279.
9
Synthetic Glycans Reveal Determinants of Antibody Functional Efficacy against a Fungal Pathogen.
ACS Infect Dis. 2024 Feb 9;10(2):475-488. doi: 10.1021/acsinfecdis.3c00447. Epub 2023 Oct 19.
10
More complicated than it seems: The diversity of cryptococcal glucuronoxylomannan.
PLoS Pathog. 2023 Aug 3;19(8):e1011521. doi: 10.1371/journal.ppat.1011521. eCollection 2023 Aug.

本文引用的文献

1
Cellulose synthesis in higher plants.
Annu Rev Cell Dev Biol. 2006;22:53-78. doi: 10.1146/annurev.cellbio.22.022206.160206.
2
Cell wall assembly in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 2006 Jun;70(2):317-43. doi: 10.1128/MMBR.00038-05.
3
Biosynthesis and assembly of capsular polysaccharides in Escherichia coli.
Annu Rev Biochem. 2006;75:39-68. doi: 10.1146/annurev.biochem.75.103004.142545.
5
Glucuronoxylomannan exhibits potent immunosuppressive properties.
FEMS Yeast Res. 2006 Jun;6(4):537-42. doi: 10.1111/j.1567-1364.2006.00072.x.
7
Breaking an impasse in pectin biosynthesis.
Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5639-40. doi: 10.1073/pnas.0601297103. Epub 2006 Apr 4.
8
Cell wall construction in Saccharomyces cerevisiae.
Yeast. 2006 Feb;23(3):185-202. doi: 10.1002/yea.1349.
9
Use of search algorithms to define specificity in Rab GTPase domain function.
Methods Enzymol. 2005;403:10-9. doi: 10.1016/S0076-6879(05)03002-8.
10
Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity.
FEMS Yeast Res. 2006 Jan;6(1):14-29. doi: 10.1111/j.1567-1364.2005.00017.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验