Suppr超能文献

基于高斯混合模型的多尺度脆弱水印技术

Multiscale fragile watermarking based on the Gaussian mixture model.

作者信息

Yuan Hua, Zhang Xiao-Ping

机构信息

Department of Electrical and Computer Engineering, Ryerson University, Toronto, Canada.

出版信息

IEEE Trans Image Process. 2006 Oct;15(10):3189-200. doi: 10.1109/tip.2006.877310.

Abstract

In this paper, a new multiscale fragile watermarking scheme based on the Gaussian mixture model (GMM) is presented. First, a GMM is developed to describe the statistical characteristics of images in the wavelet domain and an expectation-maximization algorithm is employed to identify GMM model parameters. With wavelet multiscale subspaces being divided into watermarking blocks, the GMM model parameters of different watermarking blocks are adjusted to form certain relationships, which are employed for the presented new fragile watermarking scheme for authentication. An optimal watermark embedding method is developed to achieve minimum watermarking distortion. A secret embedding key is designed to securely embed the fragile watermarks so that the new method is robust to counterfeiting, even when the malicious attackers are fully aware of the watermark embedding algorithm. It is shown that the presented new method can securely embed a message bit stream, such as personal signatures or copyright logos, into a host image as fragile watermarks. Compared with conventional fragile watermark techniques, this new statistical model based method modifies only a small amount of image data such that the distortion on the host image is imperceptible. Meanwhile, with the embedded message bits spreading over the entire image area through the statistical model, the new method can detect and localize image tampering. Besides, the new multiscale implementation of fragile watermarks based on the presented method can help distinguish some normal image operations such as JPEG compression from malicious image attacks and, thus, can be used for semi-fragile watermarking.

摘要

本文提出了一种基于高斯混合模型(GMM)的新型多尺度脆弱水印方案。首先,构建高斯混合模型来描述小波域中图像的统计特征,并采用期望最大化算法来识别高斯混合模型参数。将小波多尺度子空间划分为水印块,调整不同水印块的高斯混合模型参数以形成特定关系,用于所提出的用于认证的新型脆弱水印方案。开发了一种最优水印嵌入方法以实现最小的水印失真。设计了一个秘密嵌入密钥来安全地嵌入脆弱水印,使得即使恶意攻击者完全了解水印嵌入算法,该新方法也能抵御伪造。结果表明,所提出的新方法能够将诸如个人签名或版权标识等消息比特流作为脆弱水印安全地嵌入到宿主图像中。与传统的脆弱水印技术相比,这种基于新统计模型的方法仅修改少量图像数据,使得宿主图像上的失真难以察觉。同时,通过统计模型,嵌入的消息比特散布在整个图像区域,新方法能够检测并定位图像篡改。此外,基于所提出方法的脆弱水印的新型多尺度实现有助于区分一些正常的图像操作(如JPEG压缩)和恶意图像攻击,因此可用于半脆弱水印。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验