Liaw Siaw-Teng, Deveny Elizabeth, Morrison Iain, Lewis Bryn
School of Rural Health, The University of Melbourne, Graham Street, Shepparton, Victoria 3630, Australia.
Health Informatics J. 2006 Sep;12(3):199-211. doi: 10.1177/1460458206066772.
Using a factorial vignette survey and modeling methodology, we developed clinical and information models - incorporating evidence base, key concepts, relevant terms, decision-making and workflow needed to practice safely and effectively - to guide the development of an integrated rule-based knowledge module to support prescribing decisions in asthma. We identified workflows, decision-making factors, factor use, and clinician information requirements. The Unified Modeling Language (UML) and public domain software and knowledge engineering tools (e.g. Protégé) were used, with the Australian GP Data Model as the starting point for expressing information needs. A Web Services service-oriented architecture approach was adopted within which to express functional needs, and clinical processes and workflows were expressed in the Business Process Execution Language (BPEL). This formal analysis and modeling methodology to define and capture the process and logic of prescribing best practice in a reference implementation is fundamental to tackling deficiencies in prescribing decision support software.
我们采用析因小案例调查和建模方法,开发了临床和信息模型(纳入了安全有效开展实践所需的证据基础、关键概念、相关术语、决策制定和工作流程),以指导基于规则的综合知识模块的开发,支持哮喘治疗的处方决策。我们确定了工作流程、决策因素、因素使用情况以及临床医生的信息需求。以澳大利亚全科医生数据模型作为表达信息需求的起点,使用了统一建模语言(UML)以及公共领域软件和知识工程工具(如Protégé)。采用了面向Web服务的架构方法来表达功能需求,并用业务流程执行语言(BPEL)来表达临床过程和工作流程。这种用于在参考实现中定义和捕捉最佳处方实践的过程及逻辑的形式化分析和建模方法,对于解决处方决策支持软件中的缺陷至关重要。