Suppr超能文献

近不可压缩流体:流体动力学与大尺度不均匀性。

Nearly incompressible fluids: hydrodynamics and large scale inhomogeneity.

作者信息

Hunana P, Zank G P, Shaikh D

机构信息

Institute of Geophysics and Planetary Physics (IGPP), University of California, Riverside, CA 92521, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 2):026302. doi: 10.1103/PhysRevE.74.026302. Epub 2006 Aug 16.

Abstract

A system of hydrodynamic equations in the presence of large-scale inhomogeneities for a high plasma beta solar wind is derived. The theory is derived under the assumption of low turbulent Mach number and is developed for the flows where the usual incompressible description is not satisfactory and a full compressible treatment is too complex for any analytical studies. When the effects of compressibility are incorporated only weakly, a new description, referred to as "nearly incompressible hydrodynamics," is obtained. The nearly incompressible theory, was originally applied to homogeneous flows. However, large-scale gradients in density, pressure, temperature, etc., are typical in the solar wind and it was unclear how inhomogeneities would affect the usual incompressible and nearly incompressible descriptions. In the homogeneous case, the lowest order expansion of the fully compressible equations leads to the usual incompressible equations, followed at higher orders by the nearly incompressible equations, as introduced by Zank and Matthaeus. With this work we show that the inclusion of large-scale inhomogeneities (in this case time-independent and radially symmetric background solar wind) modifies the leading-order incompressible description of solar wind flow. We find, for example, that the divergence of velocity fluctuations is nonsolenoidal and that density fluctuations can be described to leading order as a passive scalar. Locally (for small lengthscales), this system of equations converges to the usual incompressible equations and we therefore use the term "locally incompressible" to describe the equations. This term should be distinguished from the term "nearly incompressible," which is reserved for higher-order corrections. Furthermore, we find that density fluctuations scale with Mach number linearly, in contrast to the original homogeneous nearly incompressible theory, in which density fluctuations scale with the square of Mach number. Inhomogeneous nearly incompressible equations for higher order fluctuation components are derived and it is shown that they converge to the usual homogeneous nearly incompressible equations in the limit of no large-scale background. We use a time and length scale separation procedure to obtain wave equations for the acoustic pressure and velocity perturbations propagating on fast-time-short-wavelength scales. On these scales, the pseudosound relation, used to relate density and pressure fluctuations, is also obtained. In both cases, the speed of propagation (sound speed) depends on background variables and therefore varies spatially. For slow-time scales, a simple pseudosound relation cannot be obtained and density and pressure fluctuations are implicitly related through a relation which can be solved only numerically. Subject to some simplifications, a generalized inhomogeneous pseudosound relation is derived. With this paper, we extend the theory of nearly incompressible hydrodynamics to flows, including the solar wind, which include large-scale inhomogeneities (in this case radially symmetric and in equilibrium).

摘要

推导了一种适用于高等离子体β值太阳风且存在大尺度不均匀性情况下的流体动力学方程组。该理论是在低湍流马赫数的假设下推导出来的,适用于那些常规不可压缩描述不适用且完全可压缩处理对于任何解析研究来说过于复杂的流动。当仅微弱地考虑可压缩性的影响时,就得到了一种新的描述,即“近似不可压缩流体动力学”。近似不可压缩理论最初应用于均匀流动。然而,密度、压力、温度等的大尺度梯度在太阳风中是很典型的,并且尚不清楚不均匀性将如何影响常规的不可压缩和近似不可压缩描述。在均匀情况下,完全可压缩方程的最低阶展开导致常规的不可压缩方程,随后在高阶时是由赞克和马泰厄斯引入的近似不可压缩方程。通过这项工作,我们表明包含大尺度不均匀性(在这种情况下是与时间无关且径向对称的背景太阳风)会改变太阳风流动的主导阶不可压缩描述。例如,我们发现速度涨落的散度是非无旋的,并且密度涨落可以被描述为一个主导阶的被动标量。在局部(对于小长度尺度),这个方程组收敛到常规的不可压缩方程,因此我们使用“局部不可压缩”这个术语来描述这些方程。这个术语应与“近似不可压缩”区分开来,后者用于高阶修正。此外,我们发现与原始的均匀近似不可压缩理论不同,密度涨落与马赫数呈线性比例关系,而在原始理论中密度涨落与马赫数的平方成比例。推导了高阶涨落分量的非均匀近似不可压缩方程,并表明在没有大尺度背景的极限情况下它们收敛到常规的均匀近似不可压缩方程。我们使用时间和长度尺度分离过程来获得在快速时间 - 短波长尺度上传播的声压和速度扰动的波动方程。在这些尺度上,还得到了用于关联密度和压力涨落的拟声速关系。在这两种情况下,传播速度(声速)都取决于背景变量,因此在空间上是变化的。对于慢时间尺度,无法得到简单得拟声速关系,密度和压力涨落通过一个只能用数值方法求解的关系隐式关联。经过一些简化,推导了一个广义的非均匀拟声速关系。通过本文,我们将近似不可压缩流体动力学理论扩展到包括太阳风在内的流动,这些流动包含大尺度不均匀性(在这种情况下是径向对称且处于平衡状态)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验