Tinte Silvia, Burton B P, Cockayne Eric, Waghmare U V
Ceramics Division, Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8520, USA.
Phys Rev Lett. 2006 Sep 29;97(13):137601. doi: 10.1103/PhysRevLett.97.137601.
Molecular dynamics simulations of first-principles-based effective Hamiltonians for Pb(Sc{1/2}Nb{1/2})O(3) under hydrostatic pressure and for Pb(Mg{1/3}Nb{2/3})O(3) at ambient pressure show clear evidence of a relaxor state in both systems. The Burns temperature is identified as the temperature below which dynamic nanoscale polar clusters form, pinned to regions of quenched chemical short-range order. The effect of pressure in Pb(Sc{1/2}Nb{1/2})O(3) demonstrates that the stability of the relaxor state depends on a delicate balance between the energetics that stabilize normal ferroelectricity and the average strength of random local fields which promote the relaxor state.
基于第一性原理的有效哈密顿量对静水压力下的Pb(Sc{1/2}Nb{1/2})O(3)以及常压下的Pb(Mg{1/3}Nb{2/3})O(3)进行的分子动力学模拟表明,在这两个体系中均有明显的弛豫铁电体状态的证据。伯恩斯温度被确定为低于该温度时会形成动态纳米级极性团簇,这些团簇被固定在猝灭化学短程有序区域。Pb(Sc{1/2}Nb{1/2})O(3)中压力的影响表明,弛豫铁电体状态的稳定性取决于稳定正常铁电性的能量学与促进弛豫铁电体状态的随机局域场平均强度之间的微妙平衡。