Cucciniello Nicholas, Mazza Alessandro R, Roy Pinku, Kunwar Sundar, Zhang Di, Feng Henry Y, Arsky Katrina, Chen Aiping, Jia Quanxi
Department of Materials Design & Innovation, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Materials (Basel). 2023 Oct 13;16(20):6671. doi: 10.3390/ma16206671.
As the energy demand is expected to double over the next 30 years, there has been a major initiative towards advancing the technology of both energy harvesting and storage for renewable energy. In this work, we explore a subset class of dielectrics for energy storage since ferroelectrics offer a unique combination of characteristics needed for energy storage devices. We investigate ferroelectric lead-free 0.5[Ba(TiZr)O]-0.5(BaCa)TiO epitaxial thin films with different crystallographic orientations grown by pulsed laser deposition. We focus our attention on the influence of the crystallographic orientation on the microstructure, ferroelectric, and dielectric properties. Our results indicate an enhancement of the polarization and strong anisotropy in the dielectric response for the (001)-oriented film. The enhanced ferroelectric, energy storage, and dielectric properties of the (001)-oriented film is explained by the coexistence of orthorhombic-tetragonal phase, where the disordered local structure is in its free energy minimum.
由于预计未来30年能源需求将翻番,因此在推进可再生能源的能量收集和存储技术方面已经有了一项重大举措。在这项工作中,我们探索了一类用于能量存储的电介质,因为铁电体提供了能量存储设备所需的独特特性组合。我们研究了通过脉冲激光沉积生长的具有不同晶体取向的无铅铁电0.5[Ba(TiZr)O]-0.5(BaCa)TiO外延薄膜。我们将注意力集中在晶体取向对微观结构、铁电和介电性能的影响上。我们的结果表明,(001)取向薄膜的极化增强,并且介电响应具有很强的各向异性。(001)取向薄膜增强的铁电、能量存储和介电性能可以通过正交晶系-四方相的共存来解释,其中无序的局部结构处于其自由能最小值。