Suppr超能文献

Determinants of substrate specificity in KdcA, a thiamin diphosphate-dependent decarboxylase.

作者信息

Yep Alejandra, Kenyon George L, McLeish Michael J

机构信息

College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA.

出版信息

Bioorg Chem. 2006 Dec;34(6):325-36. doi: 10.1016/j.bioorg.2006.08.005. Epub 2006 Oct 9.

Abstract

Thiamin diphosphate-dependent decarboxylases catalyze the non-oxidative decarboxylation of 2-keto carboxylic acids. Although they display relatively low sequence similarity, and broadly different range of substrates, these enzymes show a common homotetrameric structure. Here we describe a kinetic characterization of the substrate spectrum of a recently identified member of this class, the branched chain 2-keto acid decarboxylase (KdcA) from Lactococcus lactis. In order to understand the structural basis for KdcA substrate recognition we developed a homology model of its structure. Ser286, Phe381, Val461 and Met358 were identified as residues that appeared to shape the substrate binding pocket. Subsequently, site-directed mutagenesis was carried out on these residues with a view to converting KdcA into a pyruvate decarboxylase. The results show that the mutations all lowered the Km value for pyruvate and both the S286Y and F381W variants also had greatly increased values of k(cat) with pyruvate as a substrate.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验