Bi Li-Hua, Chubarova Elena V, Nsouli Nadeen H, Dickman Michael H, Kortz Ulrich, Keita Bineta, Nadjo Louis
International University Bremen, School of Engineering and Science, P.O. Box 750 561, 28725 Bremen, Germany.
Inorg Chem. 2006 Oct 16;45(21):8575-83. doi: 10.1021/ic0606835.
The benzene-Ru(II)-supported dilacunary decatungstosilicate [{Ru(C6H6)(H2O)}{Ru(C6H6)}(gamma-SiW10O36)]4- and the isostructural decatungstogermanate [{Ru(C6H6)(H2O)}{Ru(C6H6)}(gamma-GeW10O36)]4- have been synthesized and characterized by multinuclear solution NMR, IR, elemental analysis, and electrochemistry. Single-crystal X-ray analysis was carried out on K4[{Ru(C6H6)(H2O)}{Ru(C6H6)}(gamma-SiW10O36)].9H2O (K-1), which crystallizes in the orthorhombic system, space group Pmn2(1), with a = 13.6702(3) A, b = 16.2419(4) A, c = 12.1397(2) A, and Z = 2, and on K4[{Ru(C6H6)(H2O)}{Ru(C6H6)}(gamma-GeW10O36)].7H2O (K-2), which also crystallizes in the orthorhombic system, space group Pmn2(1), with a = 13.6684(12) A, b = 16.297(2) A, c = 12.1607(13) A, and Z = 2. Polyanions 1 and 2 consist of a Ru(C6H6)(H2O) group and a Ru(C6H6) group linked to a dilacunary (gamma-XW10O36) Keggin fragment resulting in an assembly with idealized Cs symmetry. The Ru(C6H6)(H2O) group is bound at the lacunary polyanion site via two Ru-O(W) bonds, whereas the Ru(C6H6) group is bound on the side via three Ru-O(W) bonds. Polyanions 1 and 2 were synthesized in aqueous acidic medium at pH 2.5 by the reaction of [Ru(C6H6)Cl2]2 with [gamma-SiW10O36]8- and [gamma-GeW10O36]8-, respectively. The formal potentials are roughly the same for the first W waves of 1 and 2. However, important differences appear for the second W waves. These observations indicate different acid-base properties for the reduced forms of 1 and 2. Three oxidation processes were detected: the oxidation of the Ru center is followed first by irreversible electrocatalytic processes of the Ru-benzene moiety and then of the electrolyte. Comparison of this behavior with that of the precursor reagent, [Ru(C6H6)Cl2]2, was useful to understand the main oxidation processes. A ligand substitution reaction was observed upon addition of dimethyl sulfoxide (dmso) to 1, 2, or [Ru(C6H6)Cl2]2. This reaction facilitates substantially the oxidation of the Ru center. The dmso was oxidized with large electrocatalytic currents more efficiently in the presence of 1 and 2 than with [Ru(C6H6)Cl2]2.
苯钌(II)负载的缺位十钨硅酸[{Ru(C6H6)(H2O)}{Ru(C6H6)}(γ-SiW10O36)]4-和同结构的十钨锗酸[{Ru(C6H6)(H2O)}{Ru(C6H6)}(γ-GeW10O36)]4-已通过多核溶液核磁共振、红外光谱、元素分析和电化学方法合成并表征。对K4[{Ru(C6H6)(H2O)}{Ru(C6H6)}(γ-SiW10O36)].9H2O(K-1)进行了单晶X射线分析,其结晶于正交晶系,空间群为Pmn2(1),a = 13.6702(3) Å,b = 16.2419(4) Å,c = 12.1397(2) Å,Z = 2;对K4[{Ru(C6H6)(H2O)}{Ru(C6H6)}(γ-GeW10O36)].7H2O(K-2)也进行了单晶X射线分析,其同样结晶于正交晶系,空间群为Pmn2(1),a = 13.6684(12) Å,b = 16.297(2) Å,c = 12.1607(13) Å,Z = 2。聚阴离子1和2由一个Ru(C6H6)(H2O)基团和一个Ru(C6H6)基团连接到一个缺位(γ-XW10O36)的Keggin片段组成,形成具有理想Cs对称性的组装体。Ru(C6H6)(H2O)基团通过两个Ru-O(W)键结合在缺位聚阴离子位点上,而Ru(C6H6)基团通过三个Ru-O(W)键结合在侧面。聚阴离子1和2分别通过[Ru(C6H6)Cl2]2与[γ-SiW10O36]8-和[γ-GeW10O36]8-在pH为2.5的水酸性介质中反应合成。1和2的第一个W波的形式电位大致相同。然而,第二个W波出现了重要差异。这些观察结果表明1和2的还原形式具有不同的酸碱性质。检测到三个氧化过程:Ru中心的氧化首先伴随着Ru-苯部分的不可逆电催化过程,然后是电解质的电催化过程。将这种行为与前体试剂[Ru(C6H6)Cl2]2的行为进行比较有助于理解主要的氧化过程。在向1、2或[Ru(C6H6)Cl2]2中加入二甲亚砜(dmso)时观察到配体取代反应。该反应极大地促进了Ru中心的氧化。与[Ru(C6H6)Cl2]2相比,在1和2存在下,dmso被大的电催化电流更有效地氧化。