Suppr超能文献

预激发到第四个C-H伸缩振动泛频的乙烯同位素变体的振动介导光解离。

Vibrationally mediated photodissociation of ethene isotopic variants preexcited to the fourth C-H stretch overtone.

作者信息

Bespechansky Evgeny, Portnov Alexander, Zwielly Amir, Rosenwaks Salman, Bar Ilana

机构信息

Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.

出版信息

J Chem Phys. 2006 Oct 7;125(13):133301. doi: 10.1063/1.2217743.

Abstract

H and D photofragments produced via vibrationally mediated photodissociation of jet-cooled normal ethene (C2H4), 1,2-trans-d2-ethene (HDCCDH), and 1,1-d2-ethene (CH2CD2), initially excited to the fourth C-H stretch overtone region, were studied for the first time. H and D vibrational action spectra and Doppler profiles were measured. The action spectra include partially resolved features due to rotational cooling, while the monitored room temperature photoacoustic spectra exhibit only a very broad feature in each species. Simulation of the spectral contours allowed determination of the band types and origins, limited precision rotational constants, and linewidths, providing time scales for energy redistribution. The H and D Doppler profiles correspond to low average translational energies and show slight preferential C-H over C-D bond cleavage in the deuterated variants. The propensities toward H photofragments emerge even though the energy flow out of the initially prepared C-H stretch is on a picosecond time scale and the photodissociation occurs following internal conversion, indicating a more effective release of the light H atoms.

摘要

首次研究了通过喷射冷却的普通乙烯(C₂H₄)、1,2-反式-d₂-乙烯(HDCCDH)和1,1-d₂-乙烯(CH₂CD₂)的振动介导光解离产生的H和D光碎片,这些分子最初被激发到第四个C-H伸缩泛频区域。测量了H和D的振动作用光谱以及多普勒轮廓。作用光谱包括由于旋转冷却而部分分辨的特征,而监测到的室温光声光谱在每个物种中仅表现出一个非常宽的特征。光谱轮廓的模拟允许确定谱带类型和起源、有限精度的转动常数以及线宽,从而提供能量重新分布的时间尺度。H和D的多普勒轮廓对应于低平均平动能量,并且在氘代变体中显示出C-H键断裂比C-D键断裂略有优先性。尽管从最初准备的C-H伸缩流出的能量在皮秒时间尺度上,并且光解离在内部转换之后发生,但对H光碎片的倾向仍然出现,这表明轻H原子的释放更有效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验