Angulo Jesus, Langpap Brigitte, Blume Astrid, Biet Thorsten, Meyer Bernd, Krishna N Rama, Peters Hannelore, Palcic Monica M, Peters Thomas
Institute of Chemistry, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany.
J Am Chem Soc. 2006 Oct 18;128(41):13529-38. doi: 10.1021/ja063550r.
The biosynthesis of human blood group B antigens is accomplished by a highly specific galactosyltransferase (GTB). On the basis of NMR experiments, we propose a "molecular tweezers mechanism" that accounts for the exquisite stereoselectivity of donor substrate selection. Transferred NOE experiments for the first time reveal the bioactive conformation of the donor substrate UDP-galactose (UDP-Gal) and of its enzymatically inactive analogue, UDP-glucose (UDP-Glc). Both bind to GTB in a folded conformation that is sparsely populated in solution, whereas acceptor ligands bind in a conformation that predominates in solution. The bound conformations of UDP-Gal and UDP-Glc are identical within experimental error. Therefore, GTB must discriminate between the two activated sugars on the basis of a hitherto unknown transition state that can only be formed in the case of UDP-Gal. A full relaxation and exchange matrix analysis of STD NMR experiments reveals that acceptor substrates dissociate significantly faster (k(off) > 100 Hz) from the binding pocket than donor substrates (k(off) approximately 10 Hz). STD NMR experiments also directly show that proper recognition of the hexopyranose rings of the UDP sugars requires bivalent metal cations. At the same time, this analysis furnishes the complete three-dimensional structure of the enzyme with its bound donor substrate UDP-Gal on the basis of a prior crystal structure analysis. We propose that, upon acceptor binding, GTB uses the Asp 302 and Glu 303 side chains as "molecular tweezers" to promote bound UDP-Gal but not UDP-Glc into a transition state that leads to product formation.
人类B血型抗原的生物合成是由一种高度特异性的半乳糖基转移酶(GTB)完成的。基于核磁共振实验,我们提出了一种“分子镊子机制”,该机制解释了供体底物选择的精确立体选择性。转移核欧沃豪斯效应(transferred NOE)实验首次揭示了供体底物尿苷二磷酸半乳糖(UDP-Gal)及其酶无活性类似物尿苷二磷酸葡萄糖(UDP-Glc)的生物活性构象。两者均以溶液中含量稀少的折叠构象与GTB结合,而受体配体则以溶液中占主导的构象结合。在实验误差范围内,UDP-Gal和UDP-Glc的结合构象是相同的。因此,GTB必须基于一种迄今未知的过渡态来区分这两种活化糖,这种过渡态仅在UDP-Gal的情况下才能形成。对饱和转移差(STD)核磁共振实验的完整弛豫和交换矩阵分析表明,受体底物从结合口袋解离的速度(k(off) > 100 Hz)明显快于供体底物(k(off) 约为10 Hz)。STD核磁共振实验还直接表明,UDP糖的六元吡喃糖环的正确识别需要二价金属阳离子。同时,基于先前的晶体结构分析,该分析提供了结合有供体底物UDP-Gal的酶的完整三维结构。我们提出,在受体结合后,GTB利用天冬氨酸302和谷氨酸303的侧链作为“分子镊子”,促使结合的UDP-Gal而非UDP-Glc进入导致产物形成的过渡态。