Sindhuwinata Nora, Grimm Lena L, Weißbach Sophie, Zinn Sabrina, Munoz Eva, Palcic Monica M, Peters Thomas
Center of Structural and Cell Biology in Medicine, Institute of Chemistry, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany.
Biopolymers. 2013 Oct;99(10):784-95. doi: 10.1002/bip.22297.
It has been observed earlier that human blood group B galactosyltransferase (GTB) hydrolyzes its donor substrate UDP-Galactose (UDP-Gal) in the absence of acceptor substrate, and that this reaction is promoted by the presence of an acceptor substrate analog, α-L-Fuc-(1,2)-β-D-3-deoxy-Gal-O-octyl (3DD). This acceleration of enzymatic hydrolysis of UDP-Gal was traced back to an increased affinity of GTB toward the donor substrate in the presence of 3DD. Herein, we present new thermodynamic data from isothermal titration calorimetry (ITC) on the binding of donor and acceptor substrates and analogs to GTB. ITC data are supplemented by surface plasmon resonance and STD-NMR titration experiments. These new data validate mutual allosteric control of binding of donor and acceptor substrates to GTB. It is of note that ITC experiments reveal significant differences in enthalpic and entropic contributions to binding of the natural donor substrate UDP-Gal, when compared with its analog UDP-Glucose (UDP-Glc). This may reflect different degrees of ordering of an internal loop (amino acids 176-194) and the C-terminus (amino acids 346-354), which close the binding pocket on binding of UDP-Gal or UDP-Glc. As both ligands have rather similar dissociation constants KD and almost identical modes of binding this finding is unexpected. Another surprising finding is that an acceptor analog, α-L-Fuc-(1,2)-β-D-3-amino-3-deoxy-Gal-O-octyl (3AD) as well as the constituent monosaccharide β-D-3-amino-3-deoxy-Gal-O-octyl (3AM) effectively inhibit enzymatic hydrolysis of UDP-Gal. This is unexpected, too, because in analogy to the effects of 3DD one would have predicted acceleration of enzymatic hydrolysis of UDP-Gal. It is difficult to explain these observations based on structural data alone. Therefore, our results highlight that there is an urgent need of experimental studies into the dynamic properties of GTB.
早前已观察到,人类血型B半乳糖基转移酶(GTB)在没有受体底物的情况下会水解其供体底物尿苷二磷酸半乳糖(UDP-Gal),并且该反应会因受体底物类似物α-L-岩藻糖基-(1,2)-β-D-3-脱氧半乳糖-O-辛酯(3DD)的存在而得到促进。UDP-Gal酶促水解的这种加速可追溯到在3DD存在下GTB对供体底物的亲和力增加。在此,我们展示了等温滴定量热法(ITC)关于供体和受体底物及其类似物与GTB结合的新热力学数据。ITC数据通过表面等离子体共振和STD-NMR滴定实验进行补充。这些新数据验证了供体和受体底物与GTB结合的相互变构控制。值得注意的是,ITC实验表明,与天然供体底物UDP-Gal的类似物尿苷二磷酸葡萄糖(UDP-Glc)相比,天然供体底物UDP-Gal结合的焓和熵贡献存在显著差异。这可能反映了内部环(氨基酸176 - 194)和C末端(氨基酸346 - 354)不同程度的有序排列,它们在UDP-Gal或UDP-Glc结合时会封闭结合口袋。由于两种配体具有相当相似的解离常数KD和几乎相同的结合模式,这一发现出乎意料。另一个惊人的发现是,受体类似物α-L-岩藻糖基-(1,2)-β-D-3-氨基-3-脱氧半乳糖-O-辛酯(3AD)以及组成单糖β-D-3-氨基-3-脱氧半乳糖-O-辛酯(3AM)能有效抑制UDP-Gal的酶促水解。这同样出乎意料,因为类似于3DD的作用,人们原本预计会加速UDP-Gal的酶促水解。仅基于结构数据很难解释这些观察结果。因此,我们的结果突出表明迫切需要对GTB的动态特性进行实验研究。