Matyjaszewski Krzysztof, Jakubowski Wojciech, Min Ke, Tang Wei, Huang Jinyu, Braunecker Wade A, Tsarevsky Nicolay V
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15309-14. doi: 10.1073/pnas.0602675103. Epub 2006 Oct 10.
The concept of initiators for continuous activator regeneration (ICAR) in atom transfer radical polymerization (ATRP) is introduced, whereby a constant source of organic free radicals works to regenerate the Cu(I) activator, which is otherwise consumed in termination reactions when used at very low concentrations. With this technique, controlled synthesis of polystyrene and poly(methyl methacrylate) (Mw/Mn < 1.2) can be implemented with catalyst concentrations between 10 and 50 ppm, where its removal or recycling would be unwarranted for many applications. Additionally, various organic reducing agents (derivatives of hydrazine and phenol) are used to continuously regenerate the Cu(I) activator in activators regenerated by electron transfer (ARGET) ATRP. Controlled polymer synthesis of acrylates (Mw/Mn < 1.2) is realized with catalyst concentrations as low as 50 ppm. The rational selection of suitable Cu complexing ligands {tris[2-(dimethylamino)ethyl]amine (Me6TREN) and tris[(2-pyridyl)methyl]amine (TPMA)} is discussed in regards to specific side reactions in each technique (i.e., complex dissociation, acid evolution, and reducing agent complexation). Additionally, mechanistic studies and kinetic modeling are used to optimize each system. The performance of the selected catalysts/reducing agents in homo and block (co)polymerizations is evaluated.
介绍了原子转移自由基聚合(ATRP)中连续活化剂再生引发剂(ICAR)的概念,即有机自由基的恒定来源用于再生Cu(I)活化剂,否则在极低浓度下使用时,Cu(I)活化剂会在终止反应中被消耗。通过这种技术,可以在10至50 ppm的催化剂浓度下实现聚苯乙烯和聚甲基丙烯酸甲酯的可控合成(Mw/Mn < 1.2),对于许多应用而言,去除或回收该催化剂是不必要的。此外,在电子转移再生催化剂原子转移自由基聚合(ARGET)ATRP中,使用各种有机还原剂(肼和苯酚的衍生物)来连续再生Cu(I)活化剂。在低至50 ppm的催化剂浓度下实现了丙烯酸酯的可控聚合物合成(Mw/Mn < 1.2)。针对每种技术中的特定副反应(即配合物解离、酸生成和还原剂络合),讨论了合适的Cu络合配体{三[2-(二甲氨基)乙基]胺(Me6TREN)和三[(2-吡啶基)甲基]胺(TPMA)}的合理选择。此外,通过机理研究和动力学建模对每个体系进行优化。评估了所选催化剂/还原剂在均聚和嵌段(共)聚合中的性能。