Antonioli Bianca, Bray David J, Clegg Jack K, Gloe Kerstin, Gloe Karsten, Kataeva Olga, Lindoy Leonard F, McMurtrie John C, Steel Peter J, Sumby Christopher J, Wenzel Marco
Department of Chemistry, Technical University Dresden, 01062, Dresden, Germany.
Dalton Trans. 2006 Oct 28(40):4783-94. doi: 10.1039/b609738c. Epub 2006 Sep 12.
Synthesis of the 2,2'-dipyridylamine derivatives di-2-pyridylaminomethylbenzene 1, 1,2-bis(di-2-pyridylaminomethyl)benzene 2, 1,3-bis(di-2-pyridylaminomethyl)benzene 3, 2,6-bis(di-2-pyridylaminomethyl)pyridine 4, 1,4-bis(di-2-pyridylaminomethyl)benzene 5, and 1,3,5-tris(di-2-pyridylaminomethyl)benzene 6 are reported together with the single-crystal X-ray structures of 2, 3, and 5. Reaction of individual salts of the type AgX (where X = NO(3)(-), PF(6)(-), ClO(4)(-), or BF(4)(-)) with the above ligands has led to the isolation of thirteen Ag(I) complexes, nine of which have also been characterised by X-ray diffraction. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a range of coordination arrangements. A series of liquid-liquid (H(2)O/CHCl(3)) extraction experiments of Ag(I) with varying concentrations of 1-6 in the organic phase have been undertaken, with the counter ion in the aqueous phase being respectively picrate, perchlorate and nitrate. In general, extraction efficiencies for a given ionophore followed the Hofmeister order of picrate > perchlorate > nitrate; in each case the tris-dpa derivative 6 acting as the most efficient extractant of the six systems investigated. Competitive seven-metal bulk membrane transport experiments (H(2)O/CHCl(3)/H(2)O) employing the above ligands as the ionophore in the organic phase and equimolar concentrations of Co(II), Ni(II), Zn(II), Cu(II), Cd(II), Pb(II) and Ag(I) in the aqueous source phase were also undertaken, with transport occurring against a pH gradient. Under the conditions employed 1 and 5 yielded negligible transport of any of the metals present in the source phase while sole transport selectivity for Ag(I) was observed for 2-4 and 6.
报道了2,2'-联吡啶胺衍生物二-2-吡啶胺甲基苯1、1,2-双(二-2-吡啶胺甲基)苯2、1,3-双(二-2-吡啶胺甲基)苯3、2,6-双(二-2-吡啶胺甲基)吡啶4、1,4-双(二-2-吡啶胺甲基)苯5和1,3,5-三(二-2-吡啶胺甲基)苯6的合成以及2、3和5的单晶X射线结构。类型为AgX(其中X = NO₃⁻、PF₆⁻、ClO₄⁻或BF₄⁻)的单个盐与上述配体反应,已分离出13种Ag(I)配合物,其中9种也通过X射线衍射进行了表征。部分地,各个配体固有的柔韧性导致了一系列配位构型的采用。进行了一系列液-液(H₂O/CHCl₃)萃取实验,用有机相中不同浓度的1-6萃取Ag(I),水相中的抗衡离子分别为苦味酸盐、高氯酸盐和硝酸盐。一般来说,对于给定的离子载体,萃取效率遵循苦味酸盐>高氯酸盐>硝酸盐的霍夫迈斯特顺序;在每种情况下,三-dpa衍生物6是所研究的六个体系中最有效的萃取剂。还进行了竞争性七金属整体膜传输实验(H₂O/CHCl₃/H₂O),在有机相中使用上述配体作为离子载体,在水相源相中使用等摩尔浓度的Co(II)、Ni(II)、Zn(II)、Cu(II)、Cd(II)、Pb(II)和Ag(I),传输是在pH梯度下进行的。在所采用的条件下,1和5对源相中存在的任何金属的传输都可以忽略不计,而对于2-4和6则观察到对Ag(I)的唯一传输选择性。