Suppr超能文献

用于评估3特斯拉扩散张量成像中并行采集技术的定量指标。

Quantitative metrics for evaluating parallel acquisition techniques in diffusion tensor imaging at 3 Tesla.

作者信息

Ardekani Siamak, Selva Luis, Sayre James, Sinha Usha

机构信息

Center for Cardiovascular Bioinformatics and Modeling, Johns Hopkins University, Maryland, USA.

出版信息

Invest Radiol. 2006 Nov;41(11):806-14. doi: 10.1097/01.rli.0000242859.75922.be.

Abstract

OBJECTIVES

Single-shot echo-planar based diffusion tensor imaging is prone to geometric and intensity distortions. Parallel imaging is a means of reducing these distortions while preserving spatial resolution. A quantitative comparison at 3 T of parallel imaging for diffusion tensor images (DTI) using k-space (generalized auto-calibrating partially parallel acquisitions; GRAPPA) and image domain (sensitivity encoding; SENSE) reconstructions at different acceleration factors, R, is reported here.

MATERIALS AND METHODS

Images were evaluated using 8 human subjects with repeated scans for 2 subjects to estimate reproducibility. Mutual information (MI) was used to assess the global changes in geometric distortions. The effects of parallel imaging techniques on random noise and reconstruction artifacts were evaluated by placing 26 regions of interest and computing the standard deviation of apparent diffusion coefficient and fractional anisotropy along with the error of fitting the data to the diffusion model (residual error).

RESULTS

The larger positive values in mutual information index with increasing R values confirmed the anticipated decrease in distortions. Further, the MI index of GRAPPA sequences for a given R factor was larger than the corresponding mSENSE images. The residual error was lowest in the images acquired without parallel imaging and among the parallel reconstruction methods, the R = 2 acquisitions had the least error. The standard deviation, accuracy, and reproducibility of the apparent diffusion coefficient and fractional anisotropy in homogenous tissue regions showed that GRAPPA acquired with R = 2 had the least amount of systematic and random noise and of these, significant differences with mSENSE, R = 2 were found only for the fractional anisotropy index.

CONCLUSION

Evaluation of the current implementation of parallel reconstruction algorithms identified GRAPPA acquired with R = 2 as optimal for diffusion tensor imaging.

摘要

目的

基于单次激发回波平面的扩散张量成像容易出现几何和强度失真。并行成像可在保持空间分辨率的同时减少这些失真。本文报道了在3T场强下,对不同加速因子R的扩散张量图像(DTI)使用k空间(广义自校准部分并行采集;GRAPPA)和图像域(灵敏度编码;SENSE)重建的并行成像进行定量比较。

材料与方法

对8名人类受试者的图像进行评估,其中2名受试者进行重复扫描以评估可重复性。互信息(MI)用于评估几何失真的整体变化。通过放置26个感兴趣区域并计算表观扩散系数和分数各向异性的标准差以及数据拟合扩散模型的误差(残差),评估并行成像技术对随机噪声和重建伪影的影响。

结果

随着R值增加,互信息指数中的正值更大,证实了失真预期减少。此外,对于给定的R因子,GRAPPA序列的MI指数大于相应的mSENSE图像。在未使用并行成像采集的图像中,残差最低,在并行重建方法中,R = 2的采集误差最小。均匀组织区域中表观扩散系数和分数各向异性的标准差、准确性和可重复性表明,R = 2采集的GRAPPA具有最少的系统和随机噪声,其中,仅分数各向异性指数在GRAPPA(R = 2)和mSENSE(R = 2)之间存在显著差异。

结论

对当前并行重建算法实施情况的评估表明,R = 2采集的GRAPPA是扩散张量成像的最佳选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验