Suppr超能文献

通过非肿瘤性黏膜基因表达谱分析预测II期结肠癌的预后

Prognosis of stage II colon cancer by non-neoplastic mucosa gene expression profiling.

作者信息

Barrier A, Roser F, Boëlle P-Y, Franc B, Tse C, Brault D, Lacaine F, Houry S, Callard P, Penna C, Debuire B, Flahault A, Dudoit S, Lemoine A

机构信息

Service de Chirurgie Digestive, Hôpital Tenon, AP-HP, Paris, France.

出版信息

Oncogene. 2007 Apr 19;26(18):2642-8. doi: 10.1038/sj.onc.1210060. Epub 2006 Oct 9.

Abstract

We have assessed the possibility to build a prognosis predictor (PP), based on non-neoplastic mucosa microarray gene expression measures, for stage II colon cancer patients. Non-neoplastic colonic mucosa mRNA samples from 24 patients (10 with a metachronous metastasis, 14 with no recurrence) were profiled using the Affymetrix HGU133A GeneChip. Patients were repeatedly and randomly divided into 1000 training sets (TSs) of size 16 and validation sets (VS) of size 8. For each TS/VS split, a 70-gene PP, identified on the TS by selecting the 70 most differentially expressed genes and applying diagonal linear discriminant analysis, was used to predict the prognoses of VS patients. Mean prognosis prediction performances of the 70-gene PP were 81.8% for accuracy, 73.0% for sensitivity and 87.1% for specificity. Informative genes suggested branching signal-transduction pathways with possible extensive networks between individual pathways. They also included genes coding for proteins involved in immune surveillance. In conclusion, our study suggests that one can build an accurate PP for stage II colon cancer patients, based on non-neoplastic mucosa microarray gene expression measures.

摘要

我们评估了基于非肿瘤性黏膜微阵列基因表达测量结果,为II期结肠癌患者构建预后预测指标(PP)的可能性。使用Affymetrix HGU133A基因芯片对24例患者(10例发生异时转移,14例无复发)的非肿瘤性结肠黏膜mRNA样本进行了分析。患者被反复随机分为大小为16的1000个训练集(TS)和大小为8的验证集(VS)。对于每个TS/VS划分,通过选择70个差异表达最显著的基因并应用对角线性判别分析在TS上确定的70基因PP,用于预测VS患者的预后。70基因PP的平均预后预测性能为:准确率81.8%,灵敏度73.0%,特异性87.1%。信息基因提示了分支信号转导途径,各途径之间可能存在广泛的网络。它们还包括编码参与免疫监视的蛋白质的基因。总之,我们的研究表明,基于非肿瘤性黏膜微阵列基因表达测量结果,可以为II期结肠癌患者构建一个准确的PP。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验