Brown Daniel G
School of Computer Science, University of Waterloo, 200 University Ave., West, Waterloo, ON N2L 3G1, Canada.
IEEE/ACM Trans Comput Biol Bioinform. 2005 Jan-Mar;2(1):29-38. doi: 10.1109/TCBB.2005.13.
We present a framework for improving local protein alignment algorithms. Specifically, we discuss how to extend local protein aligners to use a collection of vector seeds or ungapped alignment seeds to reduce noise hits. We model picking a set of seed models as an integer programming problem and give algorithms to choose such a set of seeds. While the problem is NP-hard, and Quasi-NP-hard to approximate to within a logarithmic factor, it can be solved easily in practice. A good set of seeds we have chosen allows four to five times fewer false positive hits, while preserving essentially identical sensitivity as BLASTP.
我们提出了一个改进局部蛋白质比对算法的框架。具体来说,我们讨论了如何扩展局部蛋白质比对器,以使用一组向量种子或无间隙比对种子来减少噪声匹配。我们将选择一组种子模型建模为一个整数规划问题,并给出选择这样一组种子的算法。虽然这个问题是NP难的,并且在对数因子内近似是拟NP难的,但在实践中它可以很容易地解决。我们选择的一组良好种子使得误报匹配减少了四到五倍,同时保持了与BLASTP基本相同的灵敏度。