Suppr超能文献

利用串联质谱中的同位素模式预测碎片离子的分子式

Predicting molecular formulas of fragment ions with isotope patterns in tandem mass spectra.

作者信息

Zhang Jingfen, Gao Wen, Cai Jinjin, He Simin, Zeng Rong, Chen Runsheng

机构信息

Institute of Computing Technology, Chinese Academy of Sciences, JDL, Room 701, Power Creative A, No. 1, Shangdi East Road, Haidian District, Beijing, 100080, PR China.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2005 Jul-Sep;2(3):217-30. doi: 10.1109/TCBB.2005.43.

Abstract

A number of different approaches have been proposed to predict elemental component formulas (or molecular formulas) of molecular ions in low and medium resolution mass spectra. Most of them rely on isotope patterns, enumerate all possible formulas for an ion, and exclude certain formulas violating chemical constraints. However, these methods cannot be well generalized to the component prediction of fragment ions in tandem mass spectra. In this paper, a new method, FFP (Fragment ion Formula Prediction), is presented to predict elemental component formulas of fragment ions. In the FFP method, the prediction of the best formulas is converted into the minimization of the distance between theoretical and observed isotope patterns. And, then, a novel local search model is proposed to generate a set of candidate formulas efficiently. After the search, FFP applies a new multiconstraint filtering to exclude as many invalid and improbable formulas as possible. FFP is experimentally compared with the previous enumeration methods, and shown to outperform them significantly. The results of this paper can help to improve the reliability of de novo in the identification of peptide sequences.

摘要

人们已经提出了许多不同的方法来预测低分辨率和中分辨率质谱中分子离子的元素组成式(或分子式)。其中大多数方法依赖于同位素模式,枚举离子的所有可能式子,并排除某些违反化学约束的式子。然而,这些方法不能很好地推广到串联质谱中碎片离子的组成预测。本文提出了一种新的方法——FFP(碎片离子式预测)来预测碎片离子的元素组成式。在FFP方法中,最佳式子的预测被转化为理论同位素模式与观测同位素模式之间距离的最小化。然后,提出了一种新颖的局部搜索模型来高效地生成一组候选式子。搜索之后,FFP应用一种新的多约束过滤来尽可能多地排除无效和不太可能的式子。通过实验将FFP与先前的枚举方法进行了比较,结果表明FFP的性能明显优于它们。本文的结果有助于提高肽序列从头鉴定中的可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验