Handa Hisashi
Department of Information Technology, Faculty of Engineering, Okayama University, Tsushima-Naka 3-1-1, Okayama 700-8530, Japan.
Biosystems. 2007 Feb;87(2-3):243-51. doi: 10.1016/j.biosystems.2006.09.019. Epub 2006 Sep 9.
The Estimation of Distribution Algorithms are a class of evolutionary algorithms which adopt probabilistic models to reproduce individuals in the next generation, instead of conventional crossover and mutation operators. In this paper, mutation operators are incorporated into Estimation of Distribution Algorithms in order to maintain the diversities in EDA populations. Two kinds of mutation operators are examined: a bitwise mutation operator and a mutation operator taking account into the probabilistic model. In experiments, we do not only compare the proposed methods with conventional EDAs on a few fitness functions but also analyze sampled probabilistic models by using KL-divergence. The experimental results shown in this paper elucidate that the mutation operator taking account into the probabilistic model improve the search ability of EDAs.
分布估计算法是一类进化算法,它采用概率模型来生成下一代个体,而不是使用传统的交叉和变异算子。本文将变异算子融入分布估计算法中,以保持分布估计算法种群的多样性。研究了两种变异算子:逐位变异算子和考虑概率模型的变异算子。在实验中,我们不仅将所提出的方法与传统的分布估计算法在几个适应度函数上进行比较,还使用KL散度分析采样的概率模型。本文所示的实验结果表明,考虑概率模型的变异算子提高了分布估计算法的搜索能力。