Bangert R K, Lonsdorf E V, Wimp G M, Shuster S M, Fischer D, Schweitzer J A, Allan G J, Bailey J K, Whitham T G
Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA.
Heredity (Edinb). 2008 Feb;100(2):121-31. doi: 10.1038/sj.hdy.6800914. Epub 2006 Oct 18.
Understanding the local and regional patterns of species distributions has been a major goal of ecological and evolutionary research. The notion that these patterns can be understood through simple quantitative rules is attractive, but while numerous scaling laws exist (e.g., metabolic, fractals), we are aware of no studies that have placed individual traits and community structure together within a genetics based scaling framework. We document the potential for a genetic basis to the scaling of ecological communities, largely based upon our long-term studies of poplars (Populus spp.). The genetic structure and diversity of these foundation species affects riparian ecosystems and determines a much larger community of dependent organisms. Three examples illustrate these ideas. First, there is a strong genetic basis to phytochemistry and tree architecture (both above- and belowground), which can affect diverse organisms and ecosystem processes. Second, empirical studies in the wild show that the local patterns of genetics based community structure scale up to western North America. At multiple spatial scales the arthropod community phenotype is related to the genetic distance among plants that these arthropods depend upon for survival. Third, we suggest that the familiar species-area curve, in which species richness is a function of area, is also a function of genetic diversity. We find that arthropod species richness is closely correlated with the genetic marker diversity and trait variance suggesting a genetic component to these curves. Finally, we discuss how genetic variation can interact with environmental variation to affect community attributes across geographic scales along with conservation implications.
了解物种分布的局部和区域模式一直是生态学和进化研究的主要目标。通过简单的定量规则来理解这些模式的想法很有吸引力,然而,尽管存在许多标度律(例如,代谢、分形),但我们所知没有研究将个体特征和群落结构放在一个基于遗传学的标度框架内。我们记录了生态群落标度存在遗传基础的可能性,这主要基于我们对杨树(Populus spp.)的长期研究。这些基础物种的遗传结构和多样性影响河岸生态系统,并决定了一个更大的依赖生物群落。三个例子说明了这些观点。第一,植物化学和树木结构(地上和地下)有很强的遗传基础,这会影响多种生物和生态系统过程。第二,野外实证研究表明,基于遗传学的群落结构的局部模式可以扩展到北美西部。在多个空间尺度上,节肢动物群落表型与这些节肢动物赖以生存的植物之间的遗传距离相关。第三,我们认为,常见的物种 - 面积曲线(其中物种丰富度是面积的函数)也是遗传多样性的函数。我们发现节肢动物物种丰富度与遗传标记多样性和性状变异密切相关,这表明这些曲线存在遗传成分。最后,我们讨论了遗传变异如何与环境变异相互作用,以影响跨地理尺度的群落属性以及保护意义。