Bhonsle Jayendra B, Bhattacharjee Apurba K, Gupta Raj K
Department of Medicinal Chemistry, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
J Mol Model. 2007 Jan;13(1):179-208. doi: 10.1007/s00894-006-0132-0. Epub 2006 Sep 20.
Conventional 3D-QSAR models are built using global minimum conformations or quantum-mechanics based geometry-optimized conformations as bioactive conformers. QSAR models developed using the global minima as bioactive conformers, employing the GFA, PLS and G/PLS methodologies, gave good non-validated r(2) (0.898, 0.868 and 0.922) and performed well on an internal validation test with leave-one-out correlation q(2) (LOO) (0.902, 0.726 and 0.924), leave-10%-out correlation q(2) (L10O) (0.874, 0.728 and 0.883) and leave-20%-out q(2) (L20O) (0.811, 0.716 and 0.907). However, they showed poor predictive ability on an external data set with best predictive r(2) (Pred-r(2)) of 0.349, 0.139 and 0.204 respectively. A novel methodology to mine bioactive conformers, from clusters of conformations with good 3D-spatial representation around pharmacophoric moiety, furnishes highly predictive 3D-QSAR models. The best QSAR model (model A) showed r(2) of 0.989, q(2) (LOO) of 0.989, q(2) (L10O) of 0.980, q(2) (L20O) of 0.963 and Pred-r(2) on eight test compounds of 0.845. The methodology is based on mimicking the multi-way Partial Least Squares (PLS) technique by performing several automated sequential PLS analyses. The poses/shapes of the mined bioactive conformers provide valuable insight into the mechanism of action of the insect repellents. All of the repetitive tasks were automated using Tcl-based Cerius2 scripts.
传统的3D-QSAR模型是使用全局最小构象或基于量子力学的几何优化构象作为生物活性构象构建的。使用全局最小值作为生物活性构象,采用GFA、PLS和G/PLS方法开发的QSAR模型,给出了良好的未经验证的r(2)(0.898、0.868和0.922),并且在内部验证测试中表现良好,留一法相关系数q(2)(LOO)分别为(0.902、0.726和0.924),留10%法相关系数q(2)(L10O)分别为(0.874、0.728和0.883),留20%法q(2)(L20O)分别为(0.811、0.716和0.907)。然而,它们在外部数据集上的预测能力较差,最佳预测r(2)(Pred-r(2))分别为0.349、0.139和0.204。一种从药效基团周围具有良好三维空间表示的构象簇中挖掘生物活性构象的新方法,提供了具有高度预测性的3D-QSAR模型。最佳的QSAR模型(模型A)显示r(2)为0.989,q(2)(LOO)为0.989,q(2)(L10O)为0.980,q(2)(L20O)为0.963,对8种测试化合物的Pred-r(2)为0.845。该方法基于通过执行多次自动顺序PLS分析来模拟多向偏最小二乘法(PLS)技术。挖掘出的生物活性构象的姿态/形状为驱虫剂的作用机制提供了有价值的见解。所有重复任务都使用基于Tcl的Cerius2脚本实现了自动化。